IOWA STATE UNIVERSITY Digital Repository

Retrospective Theses and Dissertations

Iowa State University Capstones, Theses and Dissertations

1954

Body measurements and blood constituents in relation to nutrient intake of Iowa children

Virginia De Cecco Sidwell Iowa State College

Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the <u>Dietetics and Clinical Nutrition Commons</u>, <u>Human and Clinical Nutrition</u> <u>Commons</u>, <u>Medical Nutrition Commons</u>, and the <u>Public Health Commons</u>

Recommended Citation

Sidwell, Virginia De Cecco, "Body measurements and blood constituents in relation to nutrient intake of Iowa children " (1954). *Retrospective Theses and Dissertations*. 13171. https://lib.dr.iastate.edu/rtd/13171

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.

ProQuest Information and Learning 300 North Zeeb Road, Ann Arbor, Mi 48106-1346 USA 800-521-0600

IMI

NOTE TO USERS

This reproduction is the best copy available.

UMI

. .

BODY MEASUREMENTS AND BLOOD CONSTITUENTS IN RELATION TO NUTRIENT INTAKE OF IOWA CHILDREN

Ъy

Virginia De Cecco Sidwell

**م

A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY

Major Subject: Nutrition

Approved:

Signature was redacted for privacy.

In Charge of Major Work

Signature was redacted for privacy.

Head of Major/Department

Signature was redacted for privacy.

Dean of/Graduate College

Iowa State College

1954

A set of the set of

UMI Number: DP12389

UMI®

UMI Microform DP12389

Copyright 2005 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

> ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, MI 48106-1346

11

RJ 20G Si 14b

TABLE OF CONTENTS

INTRODUCTION	1
SOME NUTRITIONAL STATUS STUDIES OF SCHOOL CHILDREN IN THE UNITED STATES	4
Nutritive Values of Diet	7 9 10 12 13 14
METHODS USED TO STUDY THE NUTRITIONAL STATUS OF IOWA CHILDREN	16
Sampling of the Population Blood Sampling and Analysis Physical Measurements Dietary Records Dietary Calculations Analysis of the Data	17 26 28 29 30 32
NUTRITIVE VALUE OF DIET OF IOWA CHILDREN	34
Food Energy Value Protein Value Fat Value Carbohydrate Value Calcium Value Iron Value Vitamin A Value Ascorbic Acid Value Thiamine Value Riboflavin Value Niacin Value Summary	359336 33444 55556666 66

T10469

BODY MEASUREMENTS OF IOWA CHILDREN IN RELATION TO	
NUTRIENT INTAKE AND TO BLOOD CONSTITUENTS	71
Weights of Iowa Children	71
HETRING OF TONS OUTFOLGU	1-
Mean weights of total sample of Iowa	770
children Comparison of weights of Iowa children	73
with those of other studies	75
Study of the heaviest, lightest and	a -
medium weight children	79
Physical status	79 84
Nutrient intake	84
Concentrations of various blood constituents	102
Summary	115
Heights of Iowa Children	118
Mean heights of total sample of Iowa children	119
Comparison of the heights of Iowa	/
children with those of other studies	119
Study of the tallest, shortest and	101
average height children	121
Physical status	124
Nutrient intake	130
Concentration of the various blood	
constituents	144
Summary	151
·	-
Developmental Levels of Iowa Children	156
Mean developmental level of a total	_
sample of Iowa children	158
Study of the children with the lowest	
developmental level, highest develop-	
mental level and average develop-	
mental level	160
Nutrient intake	161
Concentration of the various blood	
constituents	179

demonstrate of the three ensure of here	
Comparison of the three groups of boys and girls by means of the regression	191
Nutrient intake	195
constituents	197
Summary	201
CONCENTRATIONS OF BLOOD CONSTITUENTS OF IOWA	
CHILDREN IN RELATION TO NUTRIENT INTAKE, BODY MEASUREMENTS AND TO BACH OTHER	206
Serum Ascorbic Acid Concentration of Iowa	006
Children	206
Mean serum ascorbic acid concentra- tions of total sample of Iowa	
children	208
classified according to serum ascor- bic acid concentrations	
	211
Physical status	218 219
Concentrations of various blood constituents	225
Summary	228
·	620
Serum Carotenoid Concentration of Iowa Children	230
Mean serum carotenoid concentration of	
a total sample of Iowa children Study of the three groups of Iowa	232
children classified according to serum carotenoid concentrations	236
Physical status	241
Nutrient intake	242
constituents	248
Summary	254

Serum Alkaline Phosphatase Concentrations of Iowa Children	256
Mean serum alkaline phosphatase con- centration of total sample of	
Iowa children Study of three groups of boys and girls classified according to serum	257
alkaline phosphatase concentrations	264
Physical status	268
Nutrient intake	273
constituents	273
Summary	283
Hemoglobin Concentrations in the Blood of Iowa Children	285
Mean hemoglobin concentration in the blood of a total sample of Iowa	•
children Study of the three groups of Iowa rural and urban children classified	287
according to hemoglobin concentra- tion in blood	300
Physical status Nutrient intake Concentration of various blood	300 300
constituents	303
Summary	319
INTERRELATIONSHIPS AMONG MEASUREMENTS OF NUTRITIONAL STATUS AND NUTRIENT INTAKE	321
Interrelationships among Body Measurements and Nutrient Intakes or Blood Constituents	
of Iowa Children Interrelationships among the Various Blood	322
Constituents of Iowa Children and Physical and Nutrient Intakes	334
SUMMARY	338

V

LITERATURE CITED	341
ACKNOWLEDGMENTS	351
APPENDIX	352

.

INTRODUCTION

Since the first dietary studies were conducted in the United States by the Office of Experiment Stations in the early years of the twentieth century, efforts have been made to relate the dietary intake to certain physical conditions. At that time workers noted that families who had restricted diets did not look as healthy and well-kept as those who had a varied diet (Hills, Wait and White, 1909).

As yet, very few highly significant statistical relationships have been obtained between nutrient intake and physical or chemical characteristics of the individuals. Several investigators have attempted to explain the lack of correlation. Putman <u>et al</u>. (1949) and Sinclair (1948) claimed it to be due to experimental errors, to incorrect interpretation of the data, or a combination of these factors.

Kruse (1942) called attention to the time element that is involved in the development of tissue evidence of the deficiency diseases, and in the differences of the blood plasma concentrations from week to week.

In Nutrition Reviews (1945) this comment appeared near the close of the discussion of the North Carolina survey:

-1-

It would appear that there is a fundamental fallacy inherent in the short term nutrition survey in which dietary history, or careful records of food intake, physical measurements, biochemical and nicrobiological determinations are carried out in so short a span. . . The clinical signs which are diagnostic of deficiency diseases result from protracted deficiencies, the biochemical status at an instant of time is a composite of underlying stores or deficits and the balance between recent losses and recent accruals from intake; and the dietary story is accurate only for the particular time when records are kept. (p. 108)

The relationship between nutrient intakes and indices of nutritional status may be further obscured by the prevailing individual variation within the so-called normal range. Babcock et al. (1953) stated that

. . . high correlation between nutrients ingested and concentration of blood constituents can not be obtained within the range of normal individual variation. Also at high levels of nutrient intake the tendency for the body to store, destroy or excrete excess nutrients and the general absence of gross lesions may prevent high correlation of blood and physical findings with dietary intake. Higher correlations are to be expected, therefore, from subjects whose nutritional status ranges from very poor to fair. (p. 8)

All these factors probably do play an important role in obscuring the relationships between chemical and physical findings, and the dietary intake.

Variations within age-sex groups throughout the school years have not been studied intensively. One of the aims in this study was to observe the differences in nutrient intakes and blood constituents of the children in relation

to differences in various physical measurements. Each agesex group in height. weight and developmental level was divided into three smaller groups according to the mean and standard deviation of the age-sex group. One group consisted of children who had physical measurements that were within plus or minus one standard deviation of the mean; another group consisted of children who had physical measurements that were within plus the second and third standard deviation of the mean, and another within minus the second and third standard deviation of the mean. The comparison of the mean values for each nutrient in the diet and of the mean concentrations for each blood constituent for each of the three subgroups by age and sex may be expected to show differences related to physical measurements.

A second aim was to see whether the relationships between the physical, chemical and dietary findings are more apparent in the two extreme groups than in the average or middle group. This method of analysis is exploratory. It may be indicative of relationships which would merit more intensive analysis by regressions and correlations. It may also suggest a basis of sampling children for future nutritional status studies.

-3-

SOME NUTRITIONAL STATUS STUDIES OF SCHOOL CHILDREN IN THE UNITED STATES

In the past ten years several studies have been made of large numbers of school children in an effort to evaluate their nutritional status. The investigators of the studies listed in Table 1 had as one of their objectives, the examination of the relationship between the nutrient intake and the physical, chemical and clinical observations.

In four of the studies the investigators observed the same children over a period of time. Abbott <u>et al</u>. (1946) observed 186 children in several rural schools in northern Florida for four years. Children in three orphanages were studied by Mack <u>et al</u>. (1949) for two years. In Groton Township (New York State) Young <u>et al</u>. (1950) observed a group of children in the fall of 1948 and the spring of 1949. In Maine, Clayton (1944) made observations on 220 children from 1936 to 1940. All the other studies were cross-sectional in nature.

Approximately 8500 children were included in the 17 investigations conducted in various sections of the United States. The ages of the children extended from one to twenty years. In these selected studies most of the subjects

-4-

Sable 1

Some Mutritional Status Studies of Children of School Age in the Unit

1943-1953

Place	Investigators	No. of children		Distary records	Body measures
<u>Midvest</u>					
Iowa	Smith 1952	100	8-17	7 days	Height - Veig
Iova	Barbour 1948	63	61 8	7 days	Height - Veig
Visconsin	Reynolds at al. 1948	458	6-1 3	8 days	
Michigan	Nacy 1948	390	2-18	Veighed diets	Height - Weig
Kansas) Minnesota)	Jaichsenring <u>at</u> al. 1943	524	13-18	7 daya	Height - Veig
Nichigan	Harris <u>et al</u> . 1943	760	7-12	Yoon meal	
Northeast					
Northeast Region	Tucker <u>et al</u> . 1952 Clayton <u>et al</u> . 1953 Babcock <u>et al</u> . 1953	1295	4-20	7 day or history	Height - Weig
New York	Young <u>et al</u> .1950 Pilcher <u>et al</u> . 1950 Noore <u>et al</u> . 1951 Williams <u>et al</u> . 1951	323	1-20	l day	Height - Weig
Penn sylvania	Mack and Urback 1949	585	5-15	Weighed diets	Height - Weig and other anthropometr measurements

-5-

I

•

Table 1

onal Status Studies of Children of School Age in the United States

1943-1953

	No, of	Ages	ges Dietary	Some of the observations made			
	children	YT	records	Body measurements	Bleod	Clinice]	
	100	8-1 7	7 days	Height - Veight			
	63	6-1 8	7 days	Height - Veight	Hemoglobin Ascorbio acid	Medical	
1948	458	6-13	8 days		Hemoglobin		
	390	2-18	Weighed dieta	Height - Weight	Hemoglobin Ascorbic acid Vitamin A Carotenoids Alk, phosphatase	Nedical	
1. 1943	524	13-18	7 days	Height - Veight			
13	760	7-12	Noon meal		Henoglobin Ascorbic acid	Nedical	
52 953 953	1295	4-20	7 day or history	Height - Weight	Hemoglobin Ascorbic acid Vitamin A Carotenoids Alk, phosphatase	Nedical	
950 1 1951	323	1-20	l day	Height - Weight	Hemoglobin Ascorbio acid Vitamin A	Medical	
194 9	585	5-15	Veighed diets	Height - Weight and other anthropometric measurements	Hemoglobin Ascorbio acid Vitamin A Garotenoids Alk, phosphatase	Nedical	

Į...,

,

Place	Investigators	No. of children	Ages YT.	Dietary records	Body Moasures
New York	Bessey and Lowry 1947	1200	11-19		
Vermont	Pierce <u>et al</u> . 1945	386	3-15	l day (history)	Height - Weig
Naine	Clayton 1944	220	5-15	7 day	Height - Veig
<u>Northwest</u> Oregon	Storvick <u>at al</u> . 1951	739	14–16	Dietary	Height - Veig
Oregon	Fincks 1946	436	8-18	7 day	licight - Veig
<u>Southern</u> Iouisiana	Noschette <u>et al</u> . 1952	487	8-11	7 day	Height - Veig
Florida	Abbott <u>at al</u> . 1946	186	6-14	Noon meal	Height - Weig
* TOL. TOW					

.

٠

.

and a second provide a second se

	No. of	Ages	Distary	Some of the observations made		
	children		recorde	Body measurements	Blood	Clinical
y 19 47	1200	11–19			Hemoglobin Ascorbic acid Vitamin A Carotenoids Alk, phosphatase	
945	386	3-15	l day (history)	Height - Weight	Kemoglobin Ascorbic acid	Nedical
	220	5-15	7 day	Height - Weight	Henoglobin Ascorbic acid	Kedical
, 1951	739	14–16	Distary	Height - Veight	Hemoglobin Accorbic acid Vitamin A Carotenoids Alk, phosphatase	Kedical
	436	8-18	7 day	Height - Weight	Eenoglobin Ascorbic acid	
. 195 2	487	8-11	7 day	Height - Weight	Hemoglobin Ascorbio acid Vitamin A Carotencide	Nedical
1946	186	614	Noon meal	Height - Weight	Hemoglobin	Medical
1943	296	6-20	7 day	Height - Weight	Henoglobin Ascorbic acid Alk, phosphetase	Medical

•

. . .

.

.

•

were from public schools rather than from orphanages. The studies made by Mack and Urback (1949) and by Macy (1948) involved children in orphanages.

The investigators made a series of measurements of nutritional status of the children, also they obtained from each child a record of his dietary intake for a period of time.

The largest and most complete cross-sectional study of children has just been reported by the research workers of the Northeast Region. It was one of several regional studies of the nutritional status of population groups. The Bureau of Human Nutrition and Home Economics cooperated in certain of these investigations.

Some of the main conclusions of the entire group of studies regarding the nutrient intake and the nutritional status of children are summarized in the following sections.

Nutritive Values of Diet

Apparently many children of school age could improve their dietary practices by consuming more milk, fruits and vegetables. Investigators frequently reported deficient intakes of ascorbic acid-, carotenoid- and calcium-rich foods. (Moschette <u>et al.</u>, 1952; Tucker <u>et al.</u>, 1952; Storvick <u>et al.</u>, 1951.)

-7-

In Groton Township, New York State, Pilcher <u>et al</u>. (1950) found a higher consumption of fruits and vegetables as the amount of money spent per week or per meal increased in the family expenditures. The rural families used more fruits and vegetables than did the village families.

The dietary habits of a group of one hundred Iowa children studied by Smith (1952) showed that over a period of three years the diets did not improve in the use of milk, fruits and vegetables. The Florida children (Abbott <u>et al</u>., 1946) had poor intakes of milk, fruits and vegetables, in addition to the lack of iron due to the iron deficiency in the soil in which most of the food was grown.

Poor intakes of all nutrients were found by Youmans <u>et al</u>. (1943) in their observations on the nutritional status of people in a rural community of Tennessee. Over one-third of the subjects had protein intakes that were less than 50 grams. The caloric value of the diets of the children was lower than any of the values reported by other investigators for similar age-sex groups.

These studies from different parts of the country showed that the amount of milk, fruits and vegetables in a child's diet is determined by the family food budget, the season or the availability and the usual dietary habits.

-8-

Height and Weight

The majority of the investigators have compared their height-weight data with the standard for boys and girls presented by Baldwin and Wood (1923) and reported the findings in per cent deviation from the standard. According to this standard a fifth to a tenth of the children were ten per cent or more overweight, also an equal percentage was underweight (Babcock <u>et al.</u>, 1953; Moschette <u>et al.</u>, 1952; and Moore <u>et al.</u>, 1951).

Clayton (1944) found that a third of the Maine children in her study were below the mean measurements McCloy observed on Iowa children. Moyer, Beach <u>et al</u>. (1948) compared the institutional Michigan children to Meredith and Boynton Standards. The majority of the children from two of the institutions tended to have weights lower than minus ten per cent of the standard; otherwise the majority of the children had weights equal to or above the standards.

The Florida children had a definite retardation in growth as shown by the placement on the Wetzel Grid. The grid is a device used by Abbott and co-workers to evaluate physical development. In two years under the influence of well-planned school lunches, the children were able to overcome the lag in growth and keep up to schedule.

-9-

The data suggested that 10 to 20 per cent of the children of school age were overweight or underweight, as determined by comparison with some standard. The extent of overweight or underweight may vary considerably from area to area. Abbott and co-workers (1946) showed that underweight children may gain weight by eating a well-balanced meal at noon on each school day.

Serum Ascorbic Acid Concentrations

In their report on the serum ascorbic acid status of various groups of institutional children in Michigan, Moyer, Harrison <u>et al</u>. (1948) noted a seasonal variation in their spring and fall observations. The range of means for the three institutions was 0.68 to 1.01 mg. per cent in the spring and 0.95 to 1.08 mg. per cent in the fall. These investigators also included a resume of some of the findings on the status of serum and plasma ascorbic acid concentrations of children studied in various sections of the country. In the studies where two observations were made the same seasonal differences were observed. Although Williams <u>et al</u>. (1951) obtained practically the same mean serum ascorbic acid concentration for the whole population in the spring and fall, the data showed a shift toward the higher levels in the fall.

In the Northeast Region Clayton <u>et al.</u> (1953) observed the lowest serum ascorbic concentrations among the children in the middle teen ages. The boys had lower values than the girls in this age group. Fincke (1946) in her study of the Oregon children noted no sex differences, but the mean concentrations decreased with age. The percentage of teen-age children in Oregon with serum concentrations less than 0.6 mg. per cent was about the same in the two studies conducted by Fincke (1946) and Storvick et al. (1951).

Bessey and Lowry (1947) found that children from families in the higher socio-economic levels had fewer low concentrations of serum ascorbic acid than the children from the low socio-economic status. No matter what the economic status was, these observers inferred that 50 per cent of the children studied were not getting adequate amounts of dietary ascorbic acid.

The concentration of serum ascorbic acid can be raised by making the school lunch rich in the nutrient. Harris <u>et al</u>. (1943) demonstrated that the children fed a special soup mix had higher concentrations than the controls who had the regular meals.

From these data it appeared that the concentration is influenced by the intake, by the age of the child, also by

-11-

the sex; that is, the girls tend to have higher levels than the boys at 13 to 15 years. The concentrations tend to be higher in the fall than in the spring, probably due to the higher intake of fresh fruits and vegetables during the summer.

Serum Carotenoid Concentrations

Serum carotenoid concentrations do reflect the carotene intake of an individual. In the study of institutional children, Robinson <u>et al</u>. (1948) noted after a six weeks' diet rich in milk, fruits and vegetables a rise in the concentrations of the serum carotenoids of the children who previously had low values.

Among the preadolescent children in Louisiana, Moschette <u>et al</u>. (1952) found a small percentage with low serum carotenoid concentrations. Clayton <u>et al</u>. (1953) and Storvick <u>et al</u>. (1951) reported that one-half to threefourths of the children studied in the Northeast Region and in the Northwest Region had low concentrations; they were rated fair to poor. Bessey and Lowry (1947) said half of the 1200 New York children had concentrations below 125 micrograms per cent. One-third of the population in Groton Township had concentrations below Williams' arbitrary

-12-

dividing line, 60 micrograms per cent (Williams <u>et al</u>., 1951).

Clayton <u>et al</u>. (1953) reported significant sex differences at the ages of 13 to 15 years. The boys had lower concentrations than the girls.

From these reports it may be concluded that the serum carotenoid concentrations of children varied with area, with sex, with season and with age, also with intake of carotenerich foods. No conclusion can be made as to a satisfactory level of this blood constituent.

Serum Alkaline Phosphatase Concentrations

Abnormally high concentrations of serum alkaline phosphatase signify bone deformities (Kay, 1930), abnormally low ones hypothyroidism (Talbot, 1939). There is no agreement concerning a satisfactory normal concentration. Bessey and Lowry (1947) suggested 7 nitrophenol units (millimoles per liter of serum per hour). Williams <u>et al</u>. (1951) concluded that 12 nitrophenol units for children and 5 nitrophenol units for adults were within normal range. Most research workers compare their data with Bessey and Lowry's recommendations. Several investigators noted sex differences throughout the age range. The girls reached a peak concentration at an earlier age than the boys (Harrison <u>et al.</u>, 1948 and Clayton <u>et al.</u>, 1953). From the fall to the spring observations Clayton and co-workers reported a shift in the peak values of two nitrophenol units toward higher concentrations. The authors could not fully account for this shift. The boys (13-15 years) were at an age when the levels were expected to rise. The girls (13-15 years) were past the age when a rise due to puberty is expected. This rise, therefore, was due to other factors.

Hemoglobin Concentration in the Blood

The review of the literature relating to the hemoglobin concentration in the blood observed by a number of investigators was reported by Barbour (1948) and Ebersole (1949).

Hemoglobin concentration in the blood is often used as an index of nutritional status, yet its fluctuation from the normal is often only apparent when the subject is under severe deprivation for some time. Reynolds <u>et al</u>. (1948) noted no difference between the hemoglobin concentrations in the blood of children who came from a rich farming area and those who came from a poor farming area. The poorest

-14-

...

concentrations were found in the northeastern region of the United States among the girls of child-bearing age (Clayton <u>et al.</u>, 1953; Williams <u>et al.</u>, 1951). Very few poor values were observed by Bessey and Lowry (1947); and Storvick <u>et al.</u> (1951).

Sex differences were observed by Kaucher <u>et al</u>. (1948); Clayton <u>et al</u>. (1953) and Fincke (1946) after 12 years of age.

The hemoglobin concentrations of under-nourished children improved after they had been fed a nourishing noon meal at school over a period of time (Abbott <u>et al.</u>, 1946; Harris, 1943).

Macy (1948) and Mack and Urback (1949) were able to show that the entire nutritional status of children can be improved by feeding children ample amounts of fruits, vegetables and milk. The differences in the nutritional status brought about by the dietary changes of the children were measurable.

METHODS USED TO STUDY THE NUTRITIONAL STATUS OF IOWA CHILDREN

This study is part of a cooperative project with Iowa, Kansas and Ohio Agricultural Experiment Stations and the Bureau of Human Nutrition and Home Economics. Along with this study of food habits and nutritional status of children, an investigation was made of the organization and management of the school lunch program, of certain aspects of nutrition education programs in Iowa schools, and possible relationships between nutritional status indices and school achievements, personality and motor functions. The cooperative aspects broadened the scope of the study but at times influenced methods of procedure.

The subjects in this study were representative of a large population of Iowa school children. The sampling was done according to a plan whereby the schools and the children in the schools were randomly chosen. Among the studies of food habits and nutritional status of school children, the Iowa study is thought to be unique in its efforts to apply scientific sampling methods and thus obtain data representative of a large population of school children.

-16-

Sampling of the Population

The following two objectives were chosen as a basis for sampling the population of school children:

1. To obtain some information regarding the food habits and the nutritional status of children who lived in the city, small towns and rural areas of Iowa.

2. To obtain some information regarding the food habits and the nutritional status of children who participated and those who did not participate in a school lunch program.

The statistical personnel from the Iowa State College Statistical Laboratory recommended the following plan for sampling the schools in order to have schools representative of the various areas. The schools in Iowa were classified according to the following categories:

I. According to the population of the city, town or community in which the school is situated

a. Schools in cities of 50,000 or over

b. Schools in cities and towns under 50,000 and all consolidated and independent schools with grades one to twelve

c. Rural elementary schools

-17-

II. According to the organization of the schools

a. Junior and senior high schools

b. Elementary schools

c. Consolidated and independent schools with

grades one to twelve

III. According to the lunch program

a. Full meal¹

b. Supplemental food²

c. No lunch

d. No information

It was recommended that at least two schools be randomly chosen for each of the ten classifications.

The name, location, enrollment and number of grades in the school were obtained from the Iowa Educational Directory and from the records of the county superintendents. The name and the location of each school receiving federal reimbursement for full meals and for a milk program were

¹By full meal was meant a meal that supposedly met the federal government's specification for a type A lunch, or a complete hot meal was available to the child.

³By supplemental food was meant either milk or a hot dish was supplied by the school to supplement the lunch brought from home.

provided by the Director of the Iowa School Lunch Program. A questionnaire was mailed to the administrators of the other schools to determine whether they were operating a school lunch program, and if so what kind of a meal was served.

The information regarding each Iowa school was tallied according to the various categories. The results are shown in Tables 92, 93 and 94 (Appendix).

The sample of schools was drawn randomly from the list of schools under each category. Snedecor's table of "randomly assorted digits" was used for drawing the numbers for the sample (Snedecor, 1946). The result of this sampling is found in Table 95 (Appendix).

In the fall of 1948 there was a change in the plans, precipitated by the desire on the part of some of the local cooperators to study intensively the operation and management of the school lunches. Since lunch programs were established more extensively in consolidated and independent schools with grades one to twelve, it seemed desirable to draw a larger sample than originally planned from the stratum. The schools in this phase of the study are listed in Table 96 (Appendix).

Since it was not possible to observe every child in the school, the school population was sampled by age-sex

-19-

groups. In order to cooperate with the plan which was adopted by Ohio and Kansas to study only the 9-10-11-yearold children, it was decided to subdivide each sex into four groups:

1. 6-7-8 years,

- 2. 9-10-11 years,
- 3. 12-13-14 years, and
- 4. 15 years and above.

Not less than three children were randomly drawn from each subdivision. The sample for the whole school was designed to contain about 10 per cent of the school population. The sample was drawn from the school roll as it was obtained from the principal or superintendent. The children under each category were numbered consecutively. The sample of children was drawn by using Snedecor's table of "randomly chosen digits". In Table 99 (Appendix) are listed the number of children chosen in each school.

With the exception of one school the work on this sample of schools, representing the consolidated and independent schools with grades one to twelve of Iowa, was completed during the winter of 1948-1949.

In the fall of 1949 the schools in Population Groups I and II were re-surveyed to check changes that may have occurred in the classification of the schools in the past

two years. The schools with supplemental food were listed under schools with no school lunch program. The schools drawn for the new sample were listed in Table 98 (Appendix). In the revised sample of schools the children were chosen by a different plan from that used in the schools with grades one to twelve. This change was brought about by the fact that it was now possible to make a series of measurements of blood constituents known to be helpful in the determination of nutritional status. The staff could only handle 12 to 24 children per day, consequently, two children regardless of size of school population were chosen for each age group and sex. In the schools where a school lunch program was in operation, two sets of children were chosen, one from the group that ate school lunch at least four times a week and another from the group that carried their lunch or went home at noon. In Table 99 (Appendix) are listed the number of schools and number of children in this section of the sample.

The junior and senior high schools that had a school lunch program could not supply the information on whether or not a student ate regularly at school. Consequently, in this phase of the sample the lunch practice of the child was disregarded and the students were chosen at random from age and sex groups. Two girls and two boys were chosen

-21-

from all the children in the junior and senior high schools at each of these age classifications: 12 years or below, 13, 14, 15, and 16 years, and 17 years and above.

The schools in the sample were studied as planned, except for the rural elementary, and the urban junior and senior high schools, also one school in the group of the consolidated and independent schools (Figure 1).

As soon as the school sample was drawn, the principal or superintendent was notified either by letter or by a personal visit. The purpose of the survey and the manner that the data would be collected were fully explained to the school authorities. If they approved, arrangements were made to visit the schools. Cooperation was further enhanced by a letter to the administrators of the local schools from the State Director of the School Lunch Program, a past school superintendent well-known throughout the state. Conferences were also held with the State School Superintendent and staff to explain the project and to secure their cooperation.

The name of the child, age, and name and address of parents were obtained for each child in the selected school. After the sample of children was drawn, a letter explaining the study was sent to the parents (see Appendix). A "permission" slip was enclosed with each letter (see

-22-

Figure 1. The localities where the 61 schools in the study of the nutritional status of Iowa children were situated.

.

Appendix). If the parents were willing to have their child participate in the study, they signed the statement and returned the slip.

When the parents refused to have their child participate in the study or a child did not wish to take tests, another child from the same age-sex group was randomly chosen to replace the child who refused to be in the study. During the first year (1948-1949) when the contacts were made primarily by mail the proportion of refusals was large, about 50 per cent. In the following years the families were visited by a member of the research staff, and as a result the number of refusals fell to less than ten per cent.

For the elementary school children in Population Groups I and II, a home visit was made by a research worker, at which time the study was further explained, also the mother was instructed on how to keep a seven-day dietary record. At the same time some information was obtained about the child's family and home environment.

After all the arrangements had been made a research team went to the school to obtain the body measurements and samples of blood. The children were taken from the classroom two or three at a time. First, the blood samples were taken. In order to obtain a blood sample that contained a minimum amount of fat, also a sample that was not influenced

-25-

by the vitamins of a recent meal, the children came to school either without breakfast, or had a meal of carbohydrate-rich foods like bread and jelly or cereal with sugar. The children in Population Groups I and II were served a breakfast consisting of sweet roll, orange juice and milk as soon as the blood sample was taken.

While part of the workers prepared the blood samples to take back to the laboratory at Iowa State College, Ames, for analysis, the other workers measured the children.

Blood Sampling and Analysis

Hemoglobin determinations as outlined by Ebersole (1949) were made on the children in consolidated and independent schools with grades one to twelve.

During the following winters of 1949-1951 the blood samples were collected according to the technique outlined by Bessey, Lowry, and co-workers. If the school was near Ames, the capillary tubes containing the blood sample were centrifuged and refrigerated. Otherwise the serum was measured into the aliquots needed for the different analyses. The aliquots were placed in serological tubes and sealed tightly with rubber stoppers to prevent evaporation. The aliquots for serum carotenoids were placed in a portable

-26-

refrigerator containing dry ice. The aliquots of serum for ascorbic acid analyses were deproteinized. A measured amount of supernatant liquid was removed from each sample, put into a clean serological tube, stoppered and frozen. The aliquots of serum for the alkaline phosphatase analysis were placed in the portable refrigerator containing ice. Because the enzyme is slowly inactivated by the carbon dioxide released from the dry ice, regular ice was used to preserve the samples.

The hemoglobin values for the children in Population Groups I and II were determined by measuring the oxyhemoglobin which is formed in the presence of ammonium hydroxide. Since this mixture is not stable over long periods of time, the measured blood was placed in small vials containing four millimeters of distilled water. The vials were stoppered and refrigerated. A known amount of concentrated ammonium hydroxide was added a short time before the samples were read in the Beckman spectrophometer. If the samples were transported to the laboratory on the same day (or within six hours) of collection, the blood was added immediately to a dilute solution of ammonium hydroxide and refrigerated.

The concentrations of the different constituents in the serum were determined by the following techniques:

-27a-

Serum ascorbic acid -- Lowry, Lopez and Bessey (1945) Serum carotenoid -- Lowry, Brock and Lopez (1946) Serum alkaline phosphatase -- Bessey, Lowry and Brock

(1946)

The data on each child were complete for most of the nearly 700 children studied in the period from 1949 to 1951. Unfortunately, a blood analysis or a dietary record was not obtainable from a few children. Some children refused to have their finger pricked when it came time for the blood sample to be taken. Others under the stress of the situation did not bleed sufficiently well to provide a large enough sample for all the analyses. Occasionally the children lost their dietary record, or failed to keep a usable record.

-27b-

Physical Measurements

The children were measured in the late morning just before lunch and after they had emptied their bladders.

The small girls wore their panties, the older girls their brassiere and panties, the small boys their shorts and the older boys their "gym" trunks, when they were weighed and measured. All children were measured in their stocking feet. The small Borg bathroom scales used to weigh the children were checked at the Physics Department of Iowa State College and were certified to weigh correctly up to 275 pounds. Heights were measured against a paper scale which was glued against an upright board placed at right angles to a platform. The scale was prepared by the Iowa Child Welfare Research Station at the University of the State of Iowa. A right-angle headpiece was used to determine the point on the measuring scale which marked the highest point of the child's head. Each child was told to stand up straight, with the heels, hips, shoulders and back of the head touching the board, and to look straight ahead with arms hanging loosely at the sides, and to stand as tall as possible without lifting the heels from the floor. The heights were recorded to the nearest tenth of an inch, and the weights to the nearest half

-28-

pound. The heights and the weights were charted on the Wetzel Grid (Wetzel, 1941).

Dietary Records

During 1948-1949 children of nine years and older were instructed by a dietitian on how to keep a record of their dietary intake. In the case of the younger children, clear complete instructions were sent home to the mother. During 1949-1951 the dietitian visited the homes of the children who attended the elementary schools to explain to the mothers how the records were to be kept. The high school students followed the instructions and kept their own records. The amounts of food were recorded in household measures.

During the time that the body measurements were made the distitian reviewed the distary record with the child to make certain that the distary information was kept, as requested.

The dietary intakes were recorded by the child during the week that the blood sample was taken. In a few cases where the schedule did not permit such an arrangement, the record was kept the week preceding the time the blood sample was taken.

-29-

Dietary Calculations

To obtain an estimate on the size of servings that children at different ages usually ate, a small study was conducted on a group of Ames children whose ages were similar to those of the children in the study. The mother of each child recorded the serving of each food in household measures and in gram weight. From this pilot study it was observed that the size servings could be classified by age groups. The average gram weight was approximately 1/2 the usual adult serving for the 6-, 7- and 8-year-old children; 2/3 the usual adult serving for the 9-, 10- and 11-yearolds, and a full adult serving for the children 12 and above years. An adult serving was determined by the estimates for an average serving listed by Bowes and Church (1946). These estimates were used when a child recorded a serving of a certain food without giving the approximate measure.

Since these dietary data were to be placed on punch cards, the dietary record was translated into terms suitable for punching. The amount of food eaten at each meal every day was listed along with the size servings, number of servings, and the code number for the food item, as well as the code number for the child and the school that he attended. A card was punched for each food that the child ate at each meal.

-30-

The food energy and nutrient values for each food was "ganged punched" on these cards later.

The food energy and nutrient value of each food was punched on a "so-called master card". The information on the nutritive value of each food was obtained mainly from the <u>Composition of Foods- Raw</u>, <u>Processed and Prepared</u> (U. S. D. A., 1950) or from <u>Food Values of Portions Com-</u> <u>monly Used</u> (Bowes and Church, 1946). When it was necessary recipes were obtained from standard cook books.

The cards containing the child's number, food code and number of servings were sorted, so that all the cards with the same food code and same number of servings were in one pack. This pack, along with the master card, was placed in an I. B. M. duplicator, whereby the nutritive values for the specific food were punched on to the card.

A summary card was punched for the total food energy value and nutritive content of each meal for each child. From this set of cards the total intake of the different nutrients for the week was obtained. The average intake of the different nutrients for each child was calculated on a portable calculator. In turn, these seven-day dietary averages were punched on a card and used in the various calculations as the mean dietary intakes of each child.

-31-

Analysis of the Data

To show the central tendency and the variability of the distribution of the data for each age and sex, the mean, standard deviation, standard error of the mean and range were calculated for each age and sex. These calculations were made on the data for the following: dietary intakes, heights, weights, developmental level, and for the concentrations of the blood constituents, hemoglobin, serum carotenoid, serum ascorbic acid, and serum alkaline phosphatase.

The height, weight, developmental level and the different blood constituents for each age-sex group were subdivided into three groups according to the mean and the standard deviation, in order to observe the dietary and blood constituent differences that may exist among children with different levels of physical status and blood constituents in an age-sex group. The three groups were as follows: Group I comprised of the children who were in the minus second or third standard deviations, Group II of the children who were in the plus second or third standard deviations, and Group III of the children within plus or minus one standard deviation. The comparisons among these three groups were based on the mean of the groups.

-32-

In order to quantify the comparison in the three groups of developmental levels for each age and sex, the individuals from six to 18 years who were in Group I were pooled and considered in the calculations of the regressions as one group of children with the same characteristic. The same was done for Groups II and III. Consequently, Group I consisted of all the children with the lowest developmental level rating for each age-sex groups from 6 to 18 years; Group II all the children from 6 to 18 years with the highest developmental levels; and Group III with all the children 6 to 18 years with average developmental levels. The regressions of the developmental level on each nutrient and blood constituent were calculated for each group.

NUTRITIVE VALUE OF DIET OF IOWA CHILDREN

With the growth of the scientific spirit and method and its application to all branches of learning it is not surprising to find that the attempt has been made to record carefully and express in chemical terms the food habits of man in different countries, the underlying idea being that such a summary of data should show the practice of those who were in health, comfort and vigor, whose lives were long and whose offspring were healthy, and that this would be valuable as a guide for others. Such an inference seems natural and reasonable, for it is difficult for those who believe that the human race has developed and improved as it has lived, and has constantly brought itself and its environment more nearly into harmony, to conclude otherwise than that the general customs of a race represent the accumulated wisdom of the ages of experiment and experience which have gone before. (Langworthy, 1911, p. 10).

In this study an analysis was made of the nutrient intake of 1188 Iowa children. The mean daily intake might be expected to represent a reasonably good standard. The children were in sufficiently good health to attend school. The data were collected during a period of economic prosperity (1948-1951).

To obtain an over-all picture of the daily food energy and nutrient value of the diets, the mean, standard deviation, standard error of the mean and the range have been calculated for each sex and yearly age group.

ţ.

The standard deviation, standard error of the mean and the range are measures of variability. The mean plus or minus the standard deviation gives the limits within which two-thirds of the observations fall. The mean plus or minus the standard error of the mean gives the limits within which one may expect to find the means of other samples drawn from the same population. The range gives the spread of all the observations. From this amount of information one can observe the variability in the data, also whether the distribution is normal or skewed.

The mean nutrient intake of the Iowa children will be evaluated in accordance with the Recommended Dietary Allowances of the National Research Council (1948) for each age and sex. The findings of this study will be contrasted with results of comparable studies from other parts of the United States. So as to make the Iowa data in these instances comparable to the data reported by other investigators, the Iowa data were recalculated into the same age-sex groupings used by other investigators.

Food Energy Value

The mean food energy value of the diets of the boys either exceeded or closely approximated the allowances from 6 to 16 years. Before 12 years the values for food energy

-35-

were above, and afterwards a little below, the allowances.

In food energy value the diets of the girls were above the allowances until the ninth year. Thereafter the mean food energy values fell below the allowances except at 12, 15 and 18 years. At these ages the means barely met the allowances.

As judged from the standard error of the mean, similar studies on the same population would yield mean daily food energy values within 40 to 150 calories of the means presented in Table 2. The range of the individual observations was extensive for each age and sex. The same observation was noted in the range of the food energy values which Moschette et al. (1952) obtained in Louisiana for the 487 preadolescent children from 8 to 11 years of age. These investigators reported a range of 1164 to 5194 calories. For the similar age-groups and for both sexes the range for the Iowa children was 1056 to 4800 calories. The mean energy values of the diets of the Louisiana children appeared to be a little higher than those of the Iowa children. In Table 3 are tabulated the mean food energy values observed by Tucker et al. (1952) for the diets of the children in certain states in the Northeast Region, by Young and Pilcher (1950) for the children in Groton Township,

-36-

Mean Daily Food Energy Value of the Diets of Iowa Children

Age yr.	No.	Mean cal.	Standard deviation cal.	Standard error cal.	Range cal.
			Boys		
6 7 9 10 12 13 14 15 16 17 18	376433001592117 1787	2201 2166 2270 2433 2417 2615 2740 2877 3088 3252 3421 3399 3439	344.4 327.2 367.3 468.8 398.3 396.8 725.3 594.6 543.2 624.4 680.7 468.4	56.6 43.7 50.0 64.4 51.4 56.1 76.0 88.6 87.0 110.1 112.1 148.5 113.6	1545 - 2919 $1482 - 3221$ $1424 - 2834$ $1076 - 3374$ $1483 - 3308$ $1702 - 3743$ $962 - 4800$ $1737 - 3977$ $2082 - 4163$ $1796 - 4907$ $2443 - 5007$ $2159 - 4345$ $2828 - 4346$
			<u>Girls</u>		
6 7 8 9 10 11 12 13 14 15 16 7 18	508 508 508 508 508 4 508 508 4 509 506 50 50 50 50 50 50 50 50 50 50 50 50 50	1960 1987 2025 2282 2280 2268 2568 2471 2594 2312 2374 2374 2420	313.6 355.1 345.1 322.2 359.4 430.5 501.3 576.1 500.5 395.0 437.0 632.7 469.1	44.4 51.3 52.6 40.9 45.6 56.5 54.9 82.3 63.2 863.2 63.2 124.1 130.1	1136 - 2573 $1140 - 2485$ $1160 - 2559$ $1324 - 2891$ $1538 - 3143$ $1511 - 3359$ $1448 - 4145$ $1524 - 3472$ $1639 - 3887$ $1746 - 3172$ $1429 - 3401$ $1314 - 3328$ $1454 - 3024$

Mean Daily Food Energy Value of the Diets of Children of Iowa and of Other Places

Age group	7 - 9	years	10-12	years	13-15	years	16-18	years
Places	No.	Mean cal.	No.	Mean cal.	No.	Mean cal.	No.	Mean cal.
			Be	<u> </u>				
Iowa New York ^a Groton_Twj	163 34	2287 1569	201 29	2612 2028	116 25	3 051 2193	69 19	3419 2557
New York ^b Maine ^b Rhode Island ^b	43 	2150	43 5	2623 1920	104 85 11	3099 2976 2667	9 19 48	3279 3304 2969
West .				-			101	2901
Virginia ^b Tennessee ^C	51	1726	58	1855	64	2494	69	2723
			<u>G</u> :	irls				
Iowa New York ^a	153 23	2117 1697	204 10	2393 1849	120 20	2516 2026	75 24	2321 2275
Groton Twj New York ^b Maine ^b Rhode Island ^b	44 	1899	53 7	2173 2227	113 123 45	2614 2439 2223	8 27 189	2145 2213 2004
West .				•			131	2035
Virginia ^D Tennessee ^C	51	1726	58	1855	63	1691	65	1975

^aYoung and Pilcher (1950).

^bTucker, <u>et al</u>.(1952).

^cYoumans, <u>et al</u>.(1943).

New York State, and by Youmans <u>et al</u>. (1943) on a group of Tennessee children.

The mean food energy values of the diets of Iowa children tended to be among the highest values, and may be contrasted sharply at most ages with comparable figures from Tennessee which tended to be the lowest of the group.

Beal, Burke and Stuart (1945) presented the mean food energy value of the children that they had studied repeatedly over a period of 15 years by means of diet histories. The range of the mean energy food value for the children from 6 to 10 years of age varied from 1932 to 2345 calories for boys and from 1897 to 2168 calories for girls.

In general the mean food energy value of the diets of Iowa children was higher, and met the allowances more closely than the values that have been observed for the diets of children of the same age in other places of the United States where similar studies have been conducted.

Protein Value

The mean daily protein content of the diets of the boys was greater than the allowances through the entire age range. The girls from 6 to 13 years either had protein intakes greater than or nearly equal to the allowances. From 13 to 18 years the protein content of the diet tended to be less than the recommendations.

The protein intake of these children varied widely among individuals as well as between ages and sexes (see Table 4). The widest range of intakes was found in the 11-, 12- and 14-year-old boys and 12- and 17-year-old girls. In repeated studies in the same population the mean protein intake will fall within 2 to 4 grams of the mean obtained for each age and sex in this study.

The 487 preadolescent Louisiana children (Moschette et al., 1952) had diets with a mean daily protein content of 89 grams. The range was 42.7 to 221.7 grams; the corresponding range for the protein intake of Iowa children was 26 to 134 grams. The Iowa children seemed to have smaller protein intakes than did the Louisiana children.

The mean daily protein content of the diets of the children in Iowa was either higher than, or in the range of the values obtained by Tucker <u>et al</u>. (1952) and Young and Pilcher (1950). The Iowa children of all ages and both sexes seemed to have higher intakes of protein than the Tennessee children (see Table 5).

-40-

Mean Daily Protein Content of the Diets of Iowa Children

ŝ,

-

Age yr.	No.	Mean gm.	Standard deviation gm.	Standard error gm.	Range gm.
			Boys		
67891011213141516178	376 555 500 591 592 311 17	67 65 71 74 79 85 86 91 93 99 105 102	12.2 11.4 12.6 17.0 12.6 15.9 22.6 18.8 17.4 17.2 20.8 17.2 21.6	2.5 1.7 1.2 1.2 2.4 8 8 0 7 8 2 .0 5 7 8 2 .0 5 7 3.5 7 8 2 .0 5 7 3.5 7 3.5 7 8 2 .0 5 7 3.5 7 3.6 2 .4 8 8 0.7 8 .0 7 8 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
			<u>Girls</u>		
67890 10112314 134156 178	508 302 58 4 6 6 58 4 4 7 9 6 6 3 3 6 6 3 2 1	60 63 768 69 75 75 75 73 72 72	11.1 11.4 12.0 9.9 13.5 15.0 15.1 19.7 17.0 14.0 13.7 21.9 14.0	1.6 1.8 1.7 2.6 9 8 2.3 3.9	$38 - 81 \\ 35 - 80 \\ 36 - 86 \\ 48 - 89 \\ 42 - 108 \\ 43 - 106 \\ 44 - 128 \\ 40 - 113 \\ 44 - 112 \\ 46 - 109 \\ 32 - 90 \\ 32 - 138 \\ 44 - 95 \\ $

Mean Daily Protein Content of the Diets of Children of Iowa and Other Places

Age group	7-9	years	10-12	years	13-15	j years	16-18	years
Places	No.	Mean gm.	No.	Mean gm.	No.	Mean gm.	No.	Mean gm.
			B	оув				
Iowa New York ^a Groton _, Tw	163 34	70 73.7	2 01 29	80 84.9		,90 106.7	69 19	102 97.6
New York ^b Maine ^b Rhode Island ^b	43 	72.6 	43 5 	87.6 64.5	104 85 11	101.9 90.9 89.7	9 19 48	97.1 94.5 94.8
West Virginia ^b							101	93.6
Tennessee ^C	51	56	58	57	64	83	69	87
			G	irls				
Iowa New York ^a	153 23	65 68.8	204 10	73 70.0	120 20	74 62.2	75 24	71 65.1
Groton Tw New York ^b Maine ^b Rhode Island ^b	44 	63.8 	53 7	72.8 70.2	113 123 45	85.0 76.8 70.8	8 27 189	67.5 68.2 63.5
West Vir-							131	66.1
ginia ^b Tennessee ^c	51	56	58	<i>•</i> 57	63	48	65	60

ļ

^aYoung and Pilcher (1950).

^bTucker, <u>et al</u>. (1952).

^cYoumans, <u>et al</u>.(1943).

Fat Value

In Table 6 for all ages and both sexes are tabulated the mean, standard deviation, standard error of the mean and range of the calculated fat content of the diets of Iowa children. The mean intake of dietary fat increased with age for the boys and the girls to 18 and 12 years, respectively.

For each age and sex approximately 43 per cent of the mean food energy value of the diets came from fat.

The knowledge of the role of fat in human nutrition is meager. Deuel (1950) stated:

If we apply the results of the experiments on rats to the human picture, then a rather generous fat intake in man is indicated. The optimum level of fat in the diet on this basis would be approximately 30 per cent by weight or 50 per cent of the calories. (p. 258)

The percentage of calories from fat in the diets of Iowa children approximated the figure proposed by Deuel.

Carbohydrate Value

The mean carbohydrate content of the diets of Iowa children and the standard deviation, standard error of the mean and range for each age and sex are listed in Table 7.

-44-	

|--|

Mean Daily Fat Content of Diets of Iowa Children

Age yr.	No.	Mean gm.	Standard deviation gm.	Standard error gm.	Range gm.
			Boys		
6 7 9 10 11 12 13 14 15 16 17 18	3764 558 591 592 11 17	104 104 110 117 125 133 138 150 159 167 171 175	19.2 18.7 20.4 26.7 24.2 21.1 36.3 31.0 29.6 31.6 38.8 34.3 26.5	322333344576054	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
			<u>Girls</u>		
6789 10112314516718	508 3228844 7966 3 3332 1	94 99 110 107 109 122 116 120 126 112 114 118	18.3 20.2 18.4 16.9 16.7 24.7 25.4 28.4 26.3 21.2 22.0 35.5 24.1	0982127334797 22222324443306	51 - 134 66 - 138 51 - 134 66 - 146 64 - 158 68 - 166 54 - 189 76 - 190 84 - 186 84 - 164 57 - 157 38 - 188 64 - 150

-

Table	7
-------	---

Mean Daily Carbohydrate Content of Diets of Iowa Children

Age yr.	No.	Mean gm.	Standard deviation gm.	Standard error gm.	Range gm.
			Boys		
6789 10112 1314 1516 178	3764 5560 591 592 117	260 253 260 289 283 310 317 336 361 378 396 381 377	54.1 42.4 47.8 53.1 49.6 52.0 92.0 77.3 52.0 77.3 83.5 67.0 100.0 9 5.9	8.9 5.7 6.5 7.3 6.4 7.6 11.6 12.2 14.8 12.1 21.8 16.0	195 - 351 $142 - 319$ $159 - 351$ $161 - 412$ $174 - 410$ $170 - 434$ $82 - 582$ $203 - 537$ $221 - 537$ $196 - 487$ $280 - 584$ $193 - 539$ $267 - 520$
			<u>Girls</u>		
67890 1011234 15678	54 4 6 6 5 8 4 4 7 9 6 6 3 3 6 6 3 2 1 3 3 6 6 3	226 220 246 278 268 278 206 276 290 306 290 3070 282 275 282	38.0 46.3 49.2 43.6 52.3 51.6 73.6 73.6 53.2 53.2 66.5 57.7	5.4 6.7 7.5 6.8 7.3 11.1 10.2 8.5 10.4 13.0 16.0	130 - 327 88 - 284 125 - 358 138 - 361 189 - 383 164 - 392 169 - 515 177 - 546 203 - 417 174 - 382 131 - 352 152 - 378 177 - 351

-

There was a tendency for the boys to increase the carbohydrate intake with age up to 16 years. The girls showed a similar tendency to 16 years, but after that age they curtailed their use of this foodstuff. The variability was large for all ages and for both sexes as may be noted from the ranges.

About 46 per cent of the food energy value came from carbohydrates. This percentage was within the range (40 to 50 per cent) usually found in the average American diet.

Calcium Value

The 6- to 8-year-old and the 17-year-old boys had diets with mean daily calcium content greater than the allowances; otherwise the boys had diets with calcium values below the recommendations. The mean daily calcium content of the diets of girls were below the allowances except for the 8-year-old girls, whose intakes barely met the recommendations.

In general the mean calcium contents of the diets of the boys of Iowa increased with age (Table 8). To 12 years of age the calcium intake of the girls varied, from 13 to 18 years there was a definite decline in the mean calcium intakes. As may be noted from range the individual intakes

-46-

Mean Daily Calcium Content of the Diets of Iowa Children

Age yr.	No.	Mean mg.	Standard deviation mg.	Standard error ^m g.	Range ^m g.
			Boys		
6789 10112 1314 1516 1718	3764 555 560 591 592 117	1061 1026 1124 1093 1042 1128 1133 1139 1131 1176 1314 1441 1182	302.6 265.5 293.2 307.2 286.5 281.1 398.2 442.3 365.9 370.3 497.7 344.4	49.7 35.5 39.2 37.0 39.7 39.7 56.7 564.5 108.5 108.5	516 - 1854 529 - 1733 430 - 1721 362 - 1870 395 - 1723 546 - 1525 164 - 2437 506 - 2099 534 - 2060 257 - 2178 730 - 2046 765 - 2422 571 - 1707
			<u>Girls</u>		
67890 101234 15678	5445665844796663 133322	918 877 1009 956 936 1004 1071 994 987 899 811 838 809	260.8 269.1 245.6 246.5 293.2 287.4 307.0 415.9 324.8 301.6 315.8 295.6 315.8	36.9 38.5 37.3 37.7 37.7 37.7 57 49.3 549.3 549.3 61.6 72.6	376 - 1622 406 - 1437 504 - 1568 491 - 1460 455 - 2046 532 - 1725 434 - 1882 423 - 2685 412 - 1744 463 - 1735 168 - 1398 229 - 1853 406 - 1212

and the second secon

-

varied extensively. In the various age-sex groups the difference between the lowest and highest value of intakes was seldom less than a thousand milligrams. However, a similar study of the calcium intake of this population of children might be expected to yield a mean calcium intake within 30 to 100 milligrams of the present means.

For the Louisiana children (Moschette <u>et al.</u>, 1950), the mean calcium content of the food eaten daily was 1202 milligrams with the standard deviation of 550 milligrams and a range of 350 to 3380 milligrams. The variability was equally as large as observed in the Iowa values.

The mean calcium content of the food eaten by the Iowa boys tended to be lower than the values obtained by Tucker <u>et al.</u> (1952) except for the Maine 10-12-year-old boys and the West Virginia 16-20-year-old boys. The boys in Groton Township (Young and Pilcher, 1950) had higher dietary calcium than that noted for the boys in Iowa (see Table 9).

The Iowa girls had lower mean daily calcium intakes than were noted for the girls of corresponding ages in the Northeast Region, but with the exception of the 7-to 9year-old girls, the Groton Township girls had lower dietary calcium values than the Iowa children.

-48-

Mean Daily Calcium Content of the Diets of Children of Iowa and of Other Places

Age group	7-9	years	10-12	years	13-15	years	16-18	years
Places	No.	Mean mg.	No.	Mean mg.	No.	Mean mg.	No.	Mean mg.
			B	oya				
Iowa New York ^a Groton, Tw	163 34	1080 1100	2 01 29	1104 1318	116 25	1141 1606	69 19	1319 1292
New York ^b Maine ^b Rhode Island ^b	43 	1280 	43 5 	1540 980 	104 85 11	1560 1370 1300	9 19 48	1300 1300 1330
West Virginia ^b	,						101	1250
			0	irls				
Iowa New York ^a Groton, Tw	153 23	946 1177	204 10	1011 936	120 20	961 910	75 24	820 702
New York ^b Maine ^b Rhode Island ^b	44 	1140	53 7	1180 1210	113 123 45	1420 1090 960	8 27 189	930 1000 890
West Virginia ^b							131	92 0

^aYoung and Pilcher (1950).

^bTucker, <u>et al</u>. (1952).

Iron Value

The mean daily iron intakes of the Iowa boys fluctuated about the allowances throughout the age range (Table 10). The mean iron values of the diets of Iowa girls were below the allowances except for the 7-year-old girls, whose diets barely met the recommendations.

The mean iron values for the diets of Iowa boys were greater than for the girls. The range of the mean iron values for the girls of all ages varied from 9 to 12 milligrams. The mean iron intakes of other samples of children drawn from this population will vary most of the time within 0.2 to 0.9 milligrams from the means obtained in this study.

The pre-adolescent children in Louisiana (Moschette et al., 1950) had mean daily intakes of iron of 11.96 milligrams with a standard deviation of 3.56 milligrams, and the range was from 6.0 to 27.7 milligrams. The Iowa children for comparable ages had a range 3.8 to 18.1 milligrams and appeared to have a lower mean iron intake than had the Louisiana children.

In Table 11 are tabulated the mean iron values obtained by Tucker <u>et al</u>. (1952) for the diets of the children in the Northeast Region, and by Young and Pilcher (1950) for the diets of the children in Groton Township.

-50-

Mean Daily Iron Content of the Diets of Iowa Children

Age yr.	No.	Mean mg.	Standard deviation mg.	Standard error ^m g.	Range ^m g .
			Boys		
6 7 9 10 11 12 13 14 156 17 18	3764 550 591 592 11 17	10 10 11 12 13 14 15 16 16 15	1.5 1.7 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	0.2 0.3 0.3 0.3 0.3 4 0.3 4 0.3 4 0.5 4 86 7 0.7	$7 - 14 \\ 6 - 14 \\ 6 - 15 \\ 4 - 18 \\ 8 - 18 \\ 7 - 18 \\ 6 - 25 \\ 8 - 20 \\ 8 - 21 \\ 7 - 23 \\ 10 - 22 \\ 7 - 22 \\ 12 - 21$
			<u>Girls</u>		
6789101121314156178	508 432 66 58 4 4 79 66 3 36 6 3 26 3 26 3 26 3 3 26 3 3 26 3	9 9 11 11 10 12 11 12 10 11 11	1.4 1.6 1.8 1.9 2.0 2.5 9 2.5 9 2.3 4 2.4 3.4 2.4	0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	$\begin{array}{r} 6 & - & 12 \\ 6 & - & 12 \\ 5 & - & 14 \\ 7 & - & 15 \\ 7 & - & 18 \\ 6 & - & 19 \\ 5 & - & 18 \\ 8 & - & 18 \\ 8 & - & 18 \\ 8 & - & 16 \\ 6 & - & 17 \\ 6 & - & 15 \end{array}$

Mean Daily Iron Content of the Diets of Children of Iowa and of Other Places

Age group	7-9	years	10-12	years	13-15	years	16-18	years
Places	No.	Mean mg.	No.	Mean mg.	No.	Mean ^{mg} .	No.	Mean mg.
Boys								
Iowa New York ^a Groton Tw	163 34	10 10.9	2 01 29	12 13.6	116 25	14 18.7	69 19	16 17.3
Groton Tw New York ^b Maine ^b Rhode Island ^b	43	10.3	43 5 	13.3 12.0	104 85 11	16.4 17.0 14.5	9 19 48	19.3 18.5 15.4
West Virginia ^b		us es	** **		**		101	15.3
<u>Oirls</u>								
Iowa New York ^a Groton_Tw	153 23	10 10.3	204 10	11 10.6	120 20	12 10.0	75 24	11 11.1
New York ^b Maine ^b Rhode Island ^b	44 	9.2 	53 7 	11.3 12.2	113 123 45	13.0 14.1 11.7	8 27 189	11.3 13.1 10.6
West Virginia ^b							131	10.5

<u>.</u>

^aYoung and Pilcher (1950).

^bTucker, <u>et al</u>. (1952).

i, i

With the exception of the oldest age-group, the Iowa boys tended to have diets with mean iron values that were lower than those for the diets of the boys in the Northeast Region. The mean iron intakes of the Iowa girls tended to be similar to the intakes of the girls in the Northeast Region. The boys in Groton Township had diets with a higher iron content than that of the diets of the Iowa boys. With the exception of 7- to 9-year-old girls the Iowa girls had higher intakes of iron than had the Groton Township girls.

Vitamin A Value

The mean vitamin A values of the daily food consumption were greater than the allowances for all ages of both sexes.

For each age and sex the distribution was skewed to the right, because there were some very high values (see Table 12).

The mean vitamin A value of the daily diets of the Iowa children tended to be higher than those noted for the children in the Northeast Region (see Table 13). The Iowa boys had diets lower in vitamin A value than had the boys from Groton Township, whereas the vitamin A intake of the girls in the two studies showed no consistent relationship throughout the ages compared.

•

Table :	12
---------	----

Mean Daily Vitamin A Value of the Diets of Iowa Children

Age yr.	No.	Mean I.U.	Standard deviation I.U.	Standard error I.U.	Range I.U.
			Boys		
6789001121314150178	3764 550 591 592 11 17	5671 5835 6865 8427 7541 7637 8342 8303 9037 9800 9180 8796 8862	3077 2455 4430 5481 4262 5375 6206 6217 5665 7210 4456 4300 5205	506 328 603 753 550 760 651 927 907 1274 800 938 1263	2144 - 16769 2077 - 13260 2192 - 28670 1544 - 26396 2197 - 17978 2670 - 32242 1009 - 33044 2278 - 34266 2823 - 29919 2314 - 34307 2833 - 19542 3308 - 21804 4020 - 20898
			Girls		
67890 1012 1314 1567 18	54466584479663 33321	6175 5961 6208 6977 8010 6458 8315 6773 7219 6943 5771 7140 6596	3778 3606 4232 3851 6407 3378 4982 3645 4324 4707 3620 3912 4210	534 521 646 489 814 444 550 711 754 603 767 1168	$\begin{array}{r} 2589 & - 14588 \\ 1498 & - 17548 \\ 1945 & - 22774 \\ 1743 & - 20621 \\ 1295 & - 35282 \\ 1967 & - 15508 \\ 1842 & - 30506 \\ 2202 & - 16700 \\ 2581 & - 23477 \\ 2263 & - 20065 \\ 1228 & - 15984 \\ 1745 & - 15911 \\ 2376 & - 15860 \end{array}$

Mean Daily Vitamin A Value of the Diets of Children of Iowa and of Other Places

Age group	7-9	years	10-12	years	13-15	years	16-18	years
Places	No.	Mean I.U.	No.	Mean I.U.	No.	Mean I.U.	No.	Mean I.U.
			B	оув				
Iowa New York ^a Groton Tw	163 34	7019 7509	2 01 29	7927 11072	116 25	8963 14824	69 19	8985 11189
New York ^b Maine ^b Rhode Island ^b	43	5979 	43 5 	8109 4650 	104 85 11	7982 8790 6810	9 19 48	8044 10850 6790
West Virginia ^b			445 446				101	6840
			<u>a</u>	<u>irls</u>				
Iowa New Yorka	153 23	6357 6832	204 10	7694 5354	120 20	6916 5992	75 24	6389 6541
Groton Tw New York ^b Maine ^b Rhode	44 	5893	53 7 	6283 6310	113 123 45	7132 8340 5490	8 27 189	6200 6450 6080
Island ^b West Virginia ^b							131	639 0

1.

^aYoung and Pilcher (1950).

^bTucker, <u>et al</u>. (1952).

Moschette <u>et al</u>. (1952) reported a mean daily intake of vitamin A value of 6181 I.U. with a standard deviation 3946 I.U. for the preadolescent children in different areas of Louisiana, the range was 1109 to 32030 I.U. For Iowa children of the same age group the range was 1295 to 35282 I.U.

Ascorbic Acid Value

The mean ascorbic acid values for the diets of the Iowa boys were equal to, or higher than, the allowances to 16 years of age, then the mean values were below the recommendations. At all ages the mean daily ascorbic acid intakes of the girls were higher than the allowances.

In Table 14 it may be observed that the distribution was skewed to the right denoting that there were some high ascorbic acid values. The variation in mean daily ascorbic acid intakes of children was large, as may be noted from the ranges for each age and sex.

Moschette <u>et al</u>. (1952) reported a mean ascorbic acid value of 80 milligrams and a standard deviation 46.3 milligrams for the diets of the Louisiana children. The range was 12 to 277 milligrams. The range for Iowa children of similar ages was 19 to 205 milligrams.

-56-

Mean Daily Ascorbic Acid Content of the Diets of Iowa Children

Age yr.	No.	Mean mg.	Standard deviation mg.	Standard error mg.	Range mg.
			Boys		
6 7 9 10 11 12 13 14 15 16 17 18	376 55 56 59 15 92 11 17	81 72 78 84 77 85 84 97 91 91 111 102 86	30.1 29.2 32.1 30.2 29.1 33.8 40.1 51.7 41.5 48.0 39.0 40.8 46.1	4.9 3.9 4.4 3.8 4.1 3.8 4.1 3.8 4.2 7.6 5.0 8.50 8.9 11.1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
			<u>Oirls</u>		
6789 10112314516718	508 322 84 4 7 966 3 3 3 3 2 2 8 4 4 7 9 6 6 3	66 77 76 82 86 80 81 76 120 126 112 87 92	28.6 34.7 32.1 29.2 38.7 32.6 32.6 32.6 32.6 32.6 32.6 32.6 32.8 32.6 32.8 32.6 32.8 32.6 33.8	4.0097965934724 3.43.443.724	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

ţ.

100 A

The mean daily ascorbic acid content of the diets of Iowa boys tended to be slightly higher than the corresponding values reported by Tucker <u>et al.</u> (1952), but bore no consistent relationship with the figures obtained by Young and Pilcher (1950). The Iowa girls had higher mean daily intakes of ascorbic acid than had most of the other groups of girls (see Table 15).

Thiamine Value

In thiamine content the diets of Iowa boys either surpassed or approximately met the allowances for this nutrient. The girls had mean dietary thiamine intakes that were above or equal to the allowances to nine years, but from 10 to 18 years the Iowa girls usually had mean daily intakes of thiamine which were less than the allowances.

Table 16 shows that the boys tended to increase the mean thiamine value of the diets with age, whereas the girls maintained little change in thiamine intake throughout the age range. The variation among the individual observations was not extensive, as may be observed from the standard deviation and standard error of the mean.

The mean daily intake of thiamine of the Louisiana children was 1.27 milligram with a standard deviation of

-59-

Table 15

Mean Daily Ascorbic Acid Content of the Diets of Children of Iowa and Other Places

Age group	7-9	years	10-12	years	13-15	years	16-18	years
Places	No.	Mean mg.	No.	Mean mg.	No.	Mean mg.	No.	Mean mg.
			B	oys				
Iowa New York ^a Groton Tw	163 34	78 69	201 29	82 85	116 25	95 98	69 19	10 2 98
Groton Twj New York ^D Maine ^D Rhode Island ^b	43 	71.4 	43 5 	79.9 69.5 	104 85 11	90.2 80.6 67.1	9 19 48	100.0 80.0 82.0
West Virginia ^b							101	77.2
			<u>a</u>	irls				
Iowa New York ^a	153 23	79 58	204 10	82 81	120 20	83 70	75 24	9 0 63
Groton Twj New York ^b Maine ^b Rhode Island ^b	9 44 	66.8 	53 7 	71.8 89.5	113 123 45	87.1 77.5 71.8	8 27 189	64.9 56.2 73.8
West Virginia ^b							131	73.4

****--

^aYoung and Pilcher (1950).

^bTucker, <u>et al</u>.(1952).

Mean Daily Thiamine Content of the Diets of Iowa Children

Age yrs.	No.	Mean mg.	Standard deviation mg.	Standard error mg.	Range ^m g .
			Boys		
67890011 1213145678	3764 555 560 591 592 321 17	1.1 1.0 1.1 1.2 1.3 1.55 1.66 1.7	0.19 0.20 0.25 0.21 0.25 0.38 0.30 0.30 0.36 0.34 0.34 0.34	0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04	0.6 - 1.4 0.6 - 1.5 0.6 - 1.5 0.6 - 1.7 0.7 - 1.6 0.8 - 1.9 0.6 - 2.6 0.7 - 2.0 0.9 - 2.0 0.6 - 2.3 1.2 - 2.5 0.9 - 2.2 1.1 - 2.4
			<u>Girls</u>		
678911 123145678 1718	54466584479663 133321	1.0 1.0 1.1 1.1 1.2 1.2 1.2 1.2 1.2	0.17 0.21 0.17 0.19 0.21 0.25 0.25 0.31 0.28 0.29 0.31 0.28	0.02 0.03 0.02 0.03 0.03 0.03 0.03 0.05 0.04 0.05 0.04 0.05 0.06 0.08	0.6 - 1.3 0.6 - 1.5 0.6 - 1.3 0.8 - 1.5 0.7 - 1.6 0.7 - 1.7 0.6 - 1.7 0.6 - 1.8 0.6 - 1.9 0.6 - 1.9 0.5 - 1.6 0.8 - 1.6

i

0.32 milligram and a range of 0.56 to 1.91 milligrams. In comparison, the diets of the Iowa children ranged from 0.6 to 2.6 milligrams in thiamine content.

The mean daily thiamine content of the diets of children, as reported in other studies, was not much different from the values obtained for the diets of Iowa children (see Table 17).

Riboflavin Value

The diets of Iowa boys contained more riboflavin, as shown by the daily means, than is recommended at the various ages. The diets of Iowa girls contained amounts of riboflavin that were greater than or equal to the allowances.

The mean daily riboflavin content of the diets of the boys increased with age (see Table 18). The mean daily riboflavin content of the diets of the girls tended to increase from 6 to 12 years; after 12 years there was a decrease to values equal to those of the younger girls.

The mean daily riboflavin intake of the Louisiana children, 8 to 11 years of age, was 2.23 milligrams with a standard deviation of 0.55 milligram, and a range of 0.91 to 4.98 milligrams (Moschette <u>et al.</u> 1952).

1-

Mean Daily Thiamine Content of the Diets of Children of Iowa and of Other Places

Age group	7-9	years	10-12	years	13-15	years	16-18	years
Places	No.	Mean mg.	No.	Mean mg.	No.	Mean mg.	No.	Mean mg.
			B	оув				
Iowa New York ^a Groton_Tw	163 34	1.1 1.23	201 29	1.2 1.46	116 25	1.4 1.93	69 19	1.6 1.81
New York ^b Maine ^b Rhode Island ^b	43 	1.20	43 5 	1.50 1.22 	104 85 11	1.72 1.66 1.44	9 19 48	1.85 1.75 1.59
West Virginia ^b					a a		101	1.59
			g	irls				
Iowa New York ^a Groton Tw	153 23	1.1 1.09	204 10	1.2 1.19	120 20	1.2 1.14	75 24	1.2 1.03
New York ^b Maine ^b Rhode Island ^b	44 	1.08	53 7	1.22 1.19	113 123 45	1.41 1.36 1.20	8 27 189	1.10 1.18 1.04
West Virginia ^b	ait as						131	1.12

^aYoung and Pilcher (1950).

^bTucker, <u>et al.</u> (1952).

Table 18

Mean Daily Riboflavin Content of the Diets of Iowa Children

Age yr.	No.	Mean mg.	Standard deviation ^{mg} .	Standard error mg.	Range ^m g.
			Boys		
6 7 9 10 11 12 13 14 15 16 17 18	3764 550 5915 92117 17	1.222222222222222222222222222222222222	0.48 0.44 0.47 0.62 0.52 0.50 0.75 0.75 0.58 0.80 0.61 0.60 0.81	0.08 0.06 0.08 0.07 0.07 0.08 0.11 0.09 0.14 0.11 0.13 0.20	1.2 - 3.0 $1.0 - 3.0$ $1.0 - 3.3$ $0.9 - 4.1$ $0.9 - 3.0$ $1.2 - 3.6$ $0.5 - 4.8$ $1.0 - 4.4$ $1.5 - 3.4$ $0.8 - 4.8$ $1.5 - 3.6$ $1.7 - 3.8$ $1.4 - 4.3$
			<u>Girls</u>		
6 7 9 10 11 12 13 14 15 16 17 18	54466584479663 33321	1.7 1.6 1.8 1.9 1.8 1.9 1.6 1.6 1.6	0.45 0.48 0.48 0.58 0.552 0.559 0.559 0.47 0.47 0.47 0.39	0.06 0.07 0.06 0.07 0.06 0.09 0.11 0.07 0.07 0.07 0.11 0.11	$\begin{array}{r} 0.9 - 3.1 \\ 0.8 - 2.9 \\ 1.1 - 3.2 \\ 1.0 - 2.9 \\ 1.0 - 3.0 \\ 1.0 - 3.1 \\ 0.8 - 3.7 \\ 0.9 - 3.7 \\ 0.8 - 3.7 \\ 1.2 - 3.0 \\ 0.6 - 2.4 \\ 0.9 - 2.2 \end{array}$

alan antical standards in the second states and the second states and

-1

The mean riboflavin content of the diets of Iowa boys and girls compared favorably with the values of the children in the Northeast Region (see Table 19). The 10- to 12-yearold boys of Maine and the 13- to 15-year-old boys of Rhode Island had diets with less riboflavin than had the children in the other groups. The boys in Groton Township had higher mean intakes of riboflavin than had the Iowa boys. The girls of Iowa and of Groton Township had similar mean riboflavin intakes.

Niacin Value

The Iowa children had mean dietary niacin intakes that either exceeded or met the allowances.

The variation of the mean daily intakes of niacin among individuals was not great for the diets of the Iowa children (see Table 20). The mean niacin values of the diets of the boys of all ages and of the girls from 6 to 12 years increased with age. The girls from 13 to 18 years had the average of 13 milligrams of niacin in their daily diets.

The Louisiana children had a mean intake of 14.59 milligrams of niacin and a standard deviation of 4.3 milligrams and a range of 5.43 to 35.55 milligrams (Moschette

Mean Daily Riboflavin Content of the Diets of Children of Iowa and of Other Places

Age group	7 - 9	years	10-12	years	13-15	years	16-18	years
Places	No.	Mean mg.	No.	Mean mg.	No.	Mean mg.	No.	Mean mg.
			B	оув				
Iowa New York ^a Groton Tw	163 34	2.0 2.01	201 29	2.1 2.47	116 25	2.3 3.00	69 19	2.6 2.37
New York ^b Maine ^b Rhode Island ^b	43	2.19	43 5 	2.64 1.77	104 85 11	2.79 2.54 1.83	9 19 48	2.46 2.70 2.36
West Virginia ^b			**		40 60		101	2.32
			G	irls				
Iowa New York ^a	153 23	1.8 1.95	204 10	1.9 1.93	120 20	1.9 1.66	75 24	1.6 1.67
Groton Tw New York ^b Maine ^b Rhode	P 44	1.98	53 7 	2.09 2.12	113 123 45	2.46 2.05 1.71	8 27 189	1.72 1.80 1.63
Island ^b West Virginia ^b							131	1.66

Line .

^aYoung and Pilcher (1950).

^bTucker, <u>et al</u>, (1952).

Mean Daily Niacin Content of the Diets of Iowa Children

Age yr.	No.	Mean mg.	Standard deviation mg.	Standard error ^{mg} .	Range ^m g.
			Boys		
6 7 9 10 11 12 13 14 156 17 18	3764 555 560 591 592 117	11 12 13 13 15 15 16 17 17 18	2.0 2.5 2.3 3.1 7 1.6 5.7 8 8 1 3.4 3.2 4.1	0.32 0.33 0.32 0.41 0.40 0.52 0.43 0.54 0.56 0.67 0.61 0.98	$7 - 14 \\ 6 - 17 \\ 7 - 17 \\ 6 - 20 \\ 8 - 21 \\ 8 - 24 \\ 5 - 24 \\ 7 - 24 \\ 11 - 29 \\ 7 - 26 \\ 11 - 23 \\ 10 - 22 \\ 12 - 25 \\ $
			Girls		
67890 10112314 15678	508 322 884 4 7 9 6 6 3 5 8 4 4 7 9 6 6 3 3 3 2 2 8 4 4 7 9 6 6 3	10 10 12 12 12 14 13 14 13 13	1.8 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2	0.26 0.30 0.28 0.31 0.37 0.32 0.54 0.51 0.44 0.51 0.44 0.76 1.02	$8 - 12 \\ 7 - 14 \\ 6 - 16 \\ 7 - 21 \\ 8 - 18 \\ 6 - 21 \\ 9 - 21 \\ 6 - 20 \\ 8 - 19 \\ 7 - 21 \\ 7 - 18 \\ 6 - 20 \\ 7 - 21 \\ 7 - 21 \\ $

1.

et al., 1952). The range for the niacin value of the diets of Iowa children was 5 to 29 milligrams.

The mean daily niacin values for the diets of the Iowa boys were comparable to the values noted for the diets of the boys in the Northeast Region or in Groton Township (see Table 21).

The Iowa boys tended to have higher intakes of calories, vitamins A and C, thiamine, riboflavin and niacin than those of the Groton Township boys. The girls of Iowa seemed to have higher intakes of the various dietary components, except calcium, than the Groton Township girls.

The mean dietary differences noted between the Iowa children and the Groton Township children may be due somewhat to the fact that the means of the latter for each age group and sex were based on a one-day dietary record. In the Iowa study and in the Northeast-Region study the means were derived from seven-day records for each child. The estimate for the food energy and nutrient value based on one-day records may be misleading. Eppright <u>et al</u>. (1952) reported that the average number of servings obtained from records kept for fewer than seven days tended to be higher than the means from a seven-day record. A combination of any of the week days gave approximately the same estimates,

Table	21
-------	----

Mean Daily Niacin Content of the Diets of Children of Iowa and of Other Places

Age group	7-9	years	10-12	years	13-15	years	16-18	years
Places	No.	Mean mg.	No.	Mean mg.	No.	Mean ^{mg} .	No.	Mean mg.
			B	оув				
Iowa New York ^a Groton_Tw	163 34	12 12.1	2 01 29	14 14.1	116 25	16 17.4	69 19	17 17.7
New York ^b Maine ^b Rhode Island ^b	43	10.2	43 5 	13.7 11.2 	104 85 11	17.6 16.5 15.0	9 19 48	17.2 18.7 16.4
West Virginia ^b						~ ~	101	17.4
			Q	irls				
Iowa New York ^a	153 23	11 9.7	204 10	13 10.7	120 20	13 10.8	75 24	12 10.9
Groton Twy New York ^b Maine ^b Rhode Island ^b	44 	9.2 	53 7 	11.5 11.3	113 123 45	13.6 13.9 12.6	8 27 189	12.4 12.6 11.0
West Virginia ^b				-			131	12.2

^aYoung and Pilcher (1950).

^bTucker, <u>et al.</u> (1952).

but the week-end food intake differed significantly from the other five days.

Investigators often report dietary data in the age groups used in the tables of the Recommended Dietary Allowances of the National Research Council. It facilitates the comparison of the findings to the allowances. At each age within the period of school age, children may vary greatly from those in the preceding or following year, therefore, when two or three yearly ages are combined, the characteristics of each particular age may be lost. The characteristics of the age may be more evident if the children are considered in groups covering not more than twelve months.

Summary

1. For each age-sex group the mean, the standard deviation, the standard error of the mean and the range of the food energy and nutrient value of the diets of the Iowa children were calculated.

2. Except for the mean calcium content of the diets, the boys had mean intakes of food energy and other nutrients that either exceeded or approached the allowances.

3. With the exception of calcium and iron content, the diets of the Iowa girls had food energy values and nutrient content, that approximated or exceeded the allowances from 6 through 12 years. After 13 years of age the girls had intakes of protein, thiamine and riboflavin in addition to calcium and iron that were below the allowances. For this age group of girls the values of the remaining nutrients fluctuated about the allowances.

4. The dietary intakes of calories and other nutrients of Iowa girls and boys were comparable to the intakes of the children in the Northeast Region and Louisiana where similar studies have been made. But the values for food energy and protein were markedly higher for the Iowa children than those for the Tennessee children.

BODY MEASUREMENTS OF IOWA CHILDREN IN RELATION TO NUTRIENT INTAKE AND TO BLOOD CONSTITUENTS

Growth is a characteristic of all living things. It is more evident in certain periods of life than in others. Weight and height are the measurements commonly used to assess growth.

The height and weight are of different orders of growth and in a sense that they represent two growth functions; size or linearity; or volume or mass. They are, of course, correlated and integrated aspects of general bodily growth but only on a time linked basis. (Krogman, 1950, p. 56)

Growth in these two phases, height and weight, need not occur simultaneously.

Weights of Iowa Children

Weight is a measurement of mass or volume. The mass is made up of bone, muscle, blood, nerves, viscera, connective and adipose tissues; therefore, it becomes a complex measurement. For each age and sex the differences between the individual observations are greater for the measurement of weight than of height.

-71-

The factors that influence weight, other than the accuracy of instruments are: 1. the time of day; 2. recency of exercise, eating or elimination; 3. socio-economic status of the family of the child; 4. hereditary characteristics as racial stock and family tendencies in body build; and 5. seasonal factors (Krogman, 1950).

In making a series of consecutive measurements, the time of day is an important factor to consider. The diurnal fluctuation in weight of school children may be from two to three pounds. Summer and Whitacre (1931) studied the differences in the weights of the same children taken in the morning and in the afternoon. These investigators observed that the apparent monthly weight gained was equal to the difference between the morning weight and afternoon weight.

A single weight measurement on one individual is of limited value, but one observation on a group of individuals provides a way for describing the physical status of the population under study. For example, the means, standard deviation, standard error of the mean and range of the weights of the children for a specified age-sex group will point out: 1. the distribution of the weights for each age and sex; 2. the variation present in the data. The statistics of this weight datum may be compared to similar data from other studies. The results of the weight measurements may be a basis for a standard, to which children in the same population from which the sample was drawn, may be compared.

Mean weights of total sample of Iowa children

A single weight measurement was made on 1194 Iowa children, 593 boys and 601 girls. In Table 22 the mean, standard deviation, standard error of the mean, and range of the weights of these children are presented for each age and sex.

The mean weight at each age was greater for the boys than for the girls, except at 10 and 11 years. The sex differences were most apparent from 14 to 17 years of age. To 13 years the boys exhibited less variability in weight than the girls. After 14 years the weights of the boys varied more than those of the girls. The range of weights of the boys varied from 13 kilograms at 6 years to 55 at 17 years. For the girls the range varied from 16 kilograms at 6 years to 51 at 12 years. The standard deviations were the largest at 14 and 17 years for the boys, and at 12 years for the girls.

Table	22
-------	----

Mean	Weight	of	Iowa	Children	
------	--------	----	------	----------	--

Age yr.	No.	Mean kg.	Standard deviation kg.	Standard error kg.	Range kg.
			Boys		
6 7 9 10 11 12 13 14 15 16 17 18	38 55 55 50 50 40 24 32 18	22.6 25.6 28.1 33.7 37.9 47.9 47.9 47.4 63.6 63.8 663.1	2.87 3.52 4.79 5.61 4.55 7.98 8.74 8.87 10.59 7.08 9.76 11.00 9.55	0.47 0.46 0.66 0.59 1.13 0.92 1.34 1.67 1.25 1.67 2.40 2.25	17.1 - 30.4 $17.7 - 40.8$ $21.3 - 42.0$ $22.2 - 45.8$ $29.0 - 49.7$ $25.2 - 61.2$ $25.4 - 70.1$ $28.1 - 67.1$ $34.5 - 75.3$ $46.0 - 79.2$ $45.4 - 96.6$ $44.9 - 99.9$ $49.0 - 83.0$
			<u>Girls</u>		
6789 10112345678 17815	508446182478762 584333221	224.0 225.0 225.0 225.0 225.0 225.0 225.0 257.0	3.44 4.92 4.43 6.53 7.77 7.93 11.41 8.78 7.24 8.93 8.93 9.22 4.38	0.49 0.71 0.67 0.82 1.00 1.04 1.26 1.32 1.19 1.30 1.47 1.81 1.26	15.9 - 32.7 $12.0 - 42.6$ $19.5 - 41.3$ $19.5 - 52.2$ $22.7 - 54.0$ $25.4 - 57.2$ $28.1 - 79.8$ $27.9 - 64.2$ $37.2 - 67.6$ $40.8 - 71.2$ $44.0 - 86.6$ $43.3 - 81.6$ $45.4 - 60.6$

-74-

The greatest increment in the weight of the boys as shown by means at successive years was between the ages of 14 and 15 years. The girls had no conspicuously large increment.

Comparison of weights of Iowa children with those of other studies

It is difficult to compare the weights of the Iowa children with other studies because many investigators report their findings as per cent deviation from a standard. Jackson and Kelly (1945) reported the median of the weight data for each age and sex of Iowa children measured from 1920 to 1940. These investigators believed that the median was a better measure of central tendency since the frequency distribution of the weight measurements for each age and sex is skewed toward the heavier weights. The skewness of data can be denoted when the mean and the standard deviation and range accompany the data.

The mean weight for each age-sex group of the Iowa children in this study was compared with the mean weights of children observed in two other studies in Iowa, and in studies conducted in Denver and Chicago (see Table 23).

-75-

Comparison of Nean Weights of Iowa School Children with Similar Data f.

		 -
_	-	-

Age	Ic	nna (195)	<u>3)</u> *	L	ma (194]	.)p	Io	va (1945) ^e	Ohi	long
in yrs.	No.	Nean	s.d.	No.	Nean	s.d.	No.	50th Percentile	No.	N
		kg	kg		kg	kg		kg		
6	38	22.6	2.87	417	21.4	2.80	-	20.8	114	2
7	58	25.0	3.52	429	23.6	3.00	-	23.2	143	2
8	53	28 .6	4.79	344	26.6	4.11	-	26.0	147	2
9	55	32.1	5.61	483	29.4	4.34	-	28.2	167	3
10	60	33.7	4.55	554	33.0	5.26	-	31.5	173	3
11	50	37.9	7.98	501	35.6	6.25	-	34.4	201	3
12	90	40.8	8.74	321	38.1	7.04	-	37.0	247	4
13	4 4	47.9	8.87	22 9	43.4	8.23	-	42.3	29 3	4
14	40	51.4	10.99	168	48.7	9•53	-	47.3	373	4
15	32	61.6	7.08	-	-	-	-	54.5	362	1
16	34	63.6	9.76	-	-	-	-	58.2	29 2	6
17	21	63.8	11.00	-	-	, •••	-	62.5	229	ť
18	18	66.1	9.55	-	-	-	-	•	129	ł

Present study

^bU.S.D.A. Miscellaneous Publication No. 366

^OJackson and Kelly (1945)

d Gray and Ayres (1931)

•Naresh (1948)

1

Veights of Iowa School Children with Similar Data from Selected Studies

ova (1941) ^b		Iova (1945) ^c		Ohi	ongo (19	<u>131)^d</u>	Denver (1948) ^e		
Ngan	s.d.	No.	50%h Percentile	No.	Nean	s.d.	No.	Nean	e.d.
kg	kg		kg		kg	kg		kg	kg
21.4	2.80	•	20.8	114	22.2	3.01	175	22.2	2.05
23.6	3.00	-	23.2	143	24.6	3.25	164	25.2	2.46
26.6	4.11	-	26.0	147	27.9	3.98	169	28.1	3.09
29.4	4.34	-	28.2	167	30 .9	4.78	164	30.8	3.75
33.0	5.26	-	31.5	173	34.4	5.17	151	33.5	4.10
35.6	6.25	-	34.4	201	37.6	5.82	142	36.2	4.75
38.1	7.04	-	37.0	247	40.7	6.59	135	40 . 0	5.74
43.4	8.23	-	42.3	29 3	44.8	7.57	123	45.1	7.16
48.7	9.53	-	47.3	373	49.4	8 .06	97	50.8	7•37
•	-	-	54.5	362	56.0	9.25	71	55.6	7.01
-	-	-	58.2	292	60.6	8.87	48	60.3	6.99
•	-	-	62.5	229	64.3	8.42	39	62.4	7.47
-		-	-	129	66.1	9.78	58	66.5	7.04

:

•

the state of the s

on No. 366

Bart, California Anna III - Anna III -

The boys included in the random sample obtained from 61 places in Iowa were heavier than the boys observed by Jackson and Kelly (1945) at the Iowa Child Welfare Research Station at the University of the State of Iowa, Iowa City.

The boys, 6 to 14 years, weighed more at each age than the Iowa boys in the study conducted by the Bureau of Human Nutrition and Home Economics from 1937 to 1939 on the children throughout the nation (Misc. Fub. No. 336, 1941). From 6 to 12 years the mean weights of Iowa boys compared favorably to the mean weight of the Denver boys (Maresh, 1948) and the Chicago boys (Gray and Ayres, 1931). From 13 to 18 years the weights fluctuated about the mean of the Denver and the Chicago boys. This sample of Iowa boys, representative of a large population, was heavier than the Iowa boys that came primarily from the vicinity of Iowa City.

From 6 to 12 years the weights of the Iowa girls were most like those observed by Gray and Ayres (1931) in Chicago and Maresh (1948) in Denver (see Table 24). From 12 to 18 years the Iowa girls tended to exceed the mean weights reported in other studies.

Comparison of Nean Veights of Iowa School Children with Similar Data :

Girls

Age	Ł	wa (195	<u>3)</u> *	I	wa (1941	7,9	Ia	me (1945) ° 50th	Ohice
yrs.	No.	Nean	s,d,	No.	Kean	s.d.	No.	Percentile	Ľo.
	•	kg	kg		kg	kg		kg	
6	50	22.0	3.44	445	20.9	2.63	-	20.3	74
7	48	24,8	4.92	535	23.5	3.25	-	22.5	90
8	44	26.3	4,43	492	26.3	4.53	-	25.2	100
9	64	30.7	6.53	539	29.0	4 .89	-	28.0	122
10	61	35.3	7.77	542	32.2	5.87	-	31.1	110
11	58	40,1	7.93	540	35.9	6.24	-	34.4	139
12	82	45.6	11.41	323	40.7	7.23	-	39.6	126
13	44	46.8	8.78	181	44.2	8.36	-	44.5	124
14	37	51.3	7.24	134	48.2	8.07	•	49.0	108
15	38	56.6	8.04	-	-	-	-	51.5	96
16	37	57.2	8.93	-	•	-	-	52.7	86
17	26	57.5	9.22	-	•	•	-	53•5	86
18	12	54.1	4.38	•	-	-	-	-	51

Present study

^bU.S.D.A. Miscellaneous Publication No. 366

.

^CJackson and Kelly (1945)

^dGray and Ayres (1931)

⁶Maresh (1948)

sights of Iowa Schoel Children with Similar Data from Selected Studies

Girls

(1941) ^b		Iova (1945) C		Ch	0000 (19	1)d	Denver (1948).		
Nean .	s.d.	No.	50th Percentile	Eo.	Nean	s.d.	No.	Xeen	. s.d.
kg	kg		s. kg		ing	kg		kg	kg
20 .9	2,63	-	20.3	74	22.4	2 .96	145	21.8	2.77
23.5	3.25	-	22.5	90	25.1	2.86	146	24.8	3.67
26.3	4.53	-	25.2	100	27.9	4.83	136	27.9	4.48
29.0	4.89	-	28 . Ò	122	31.8	4.82	118	31.8	5.69
32.2	5.87	-	31.1	110	35.2	6.40	104	35.6	6.64
35.9	6.24	-	34.4	139	39.1	7.24	100	39.6	8.23
40.7	7.23	-	39.6	126	43.7	8.23	93	44.0	9.16
44.2	8.36	-	44.5	124	47.9	8.29	92	48.5	8.94
48.2	8.07	-	49.0	108	50.7	7.98	73	52.0	8,71
-	-	-	51.5	96	54.5	7.72	43	53•4	8,89
-	-	-	52.7	86	55.7	7.63	34	54.7	8.70
-	-	-	53 •5	86	57.0	7.10	21	54.8	7.37
-	-	-	-	51	57.4	5.81	28	55.3	5.33

No. 366

Study of the heaviest, lightest and medium weight children

To study the dietary habits and blood constituents of heaviest and lightest weight boys and girls, each age and sex group was divided into three groups. Group I consisted of individuals whose weights were within minus second or third standard deviations from the mean of the age-sex group; Group II those whose weights were within the plus second or third standard deviations from the mean; Group III those whose weights were within the plus or minus one standard deviation.

<u>Physical status</u>. It may be noted in Figures 2 and 3 that the mean weights of boys and girls in Group I were below the 16th percentile except for the 15 year old boys. This group as a whole may be considered as the lightest weight boys and girls. The mean weights of the children in Group II were above the 84th percentile. They may be considered as the heaviest weight boys and girls. The mean weights of the children of Group III were in the area between the 16th and 84th percentiles, close to the median. This group was of medium weight.

-79-

Figure 2. Mean heights and weights of Iowa boys classified according to weight groups. ž

1077 / Alternation

١

-81-

Figure 3. Mean weights of Iowa girls classified according to weight groups. ţ

Contraction and the second

-83-

. . .

and the second second spice of the second second

In the discussion these groups will be referred to as lightest weight, heaviest weight and medium weight. Of the total number of boys and girls, 11 per cent of the boys and 13 per cent of the girls were in the group with lightest weight, 12 per cent of the boys and 16 per cent of the girls were in the group with heaviest weight, and 77 per cent of the boys and 71 per cent of the girls were in the medium group.

The children of heaviest weight were taller than those of lightest weight. The children of medium weight had mean heights that were between the heights of the children of heaviest weight and of lightest weight, except for the heaviest weight 16-year-old boys (Table 25).

<u>Nutrient intake</u>. The mean daily food energy and nutrient value of the diets of the children classified according to weight for each age-sex group are presented in Tables 26 and 27.

The boys of heaviest weight had mean food energy values that were nearly always above the values for the boys of lightest weight at corresponding ages (see Figure 4). Except at 9, 16, 17 and 18 years the boys of medium weight had diets with food energy values that tended to be intermediate to those of the boys of heaviest weight and the lightest weight.

-84-

Table 25

Mean Heights	oſ	Iowa	Children	Classified	According
-		to V	leight Gro	oups	

Groups ^a	1]	I	1	II
Age yr.	No.	Cm.	No.	Cm.	No.	<u> </u>
			Boys			
6 7 8 9 10 11 12 13 14 15 16 17 18	5528732654312	111 123 126 133 131 139 147 162 161 159 180	4 557672675324	124 131 138 139 147 151 158 160 172 179 169 180 180	286 46 347 66 27 3258 11	118 124 131 137 139 144 158 155 171 172 172 169
			<u>Girls</u>			
6 7 8 9 10 11 12 13 14 15 16 17 18	6 37 96 0 36 554 2 2	110 115 122 124 130 136 143 158 158 159 160	56 51 11 12 96 8 96 52	124 129 133 142 150 152 157 160 165 165 165 165	39 391 391 391 391 391 392 44 3592 44 208 8	118 122 126 133 140 147 152 153 160 160 160 162 163

^aGroup I--Weights minus 2 or 3 standard deviations Group II--Weights plus 2 or 3 standard deviations Group III--Weights within ± 1 standard deviations

Table 26

Mean Daily Food Energy Value and Matrient Content of Diet: of Iowa Children Classified According to Three Weight Grow

Boys

Age in yrs.	Xo. '	Group ^a	Veight kg.	Age in Mos.	Food Energy cal.	Protein gn.	Calcium E.	Iron Mg.	Ascorb acid mg.
6	<	I	18.4	76	1923	63	966	9	80
v	5 4	īı	27.5	79	2430	72	1048	ń	92
	28	ÎÎI	22.7	78	2218	67	1080	9	79
7	5 5 46	I.	19.8	87	2107	60	814	9	61
•	5	II	32.9	91	2369	76	1095	11	83
	46	III	24.9	89	2202	66	1044	10	74
8	2	I	22,0	100	1750	5 8	1060	7	78
	5	II	39.2	99	2282	72	1029	11	114
	2 5 46	III	27.8	99	2269	72	1136	10	74
9	8 7	I	24.6	111	2331	70	1098	n	77
-	7	II	41.9	116	2419	76	1071	11	90
	38	III	31.9	114	2518	76	1135	12	86
10	7	I	27.6	124	2547	78	980	12	80
	7 6	II	42.6	128	2381	73	933	12	87
	47	III	33.5	125	2402	73	1064	11	75
11	3	I	26.6	136	2630	74	1200	11	69
	7	II	53.7	138	2869	95	1387	13	98 84
	3 7 40	III	36.0	137	2569	77	1094	11	84

Group

,

I Weights - Minus 2 or 3 standard deviations
II Weights - Plus 2 or 3 standard deviations
III Weights - Within 1 standard deviation

.

Table 26

in Daily Food Energy Value and Matrient Content of Diets Iowa Children Classified According to Three Weight Groups

Boys

Age in mos.	Food Rnorgy cal.	Protein gn.	Calcium	Iron MG.	Assorbic acid E.	Thiamine E.	Ribo- flavin E.	Fiacia Rg.
76	1923	63	966	9	80	0.9	1.7	10
79	2430	72	1048	ú	92	1.2	1.8	13
78	2218	67	1080	9	79	1,1	1.9	ñ
87	2107	60	814	9	61	1.0	1.6	12
91	2369	76	1095	Ú	83	1.2	2.2	12
<u> 89</u>	2202	66	1044	10	74	1.0	1.9	12 11
100	1750	58	1060	7	78	0.9	1,8	8
99	2282	72	1029	n	114	1.2	1.9	12
99	2269	72	1136	10	74	1,1	2,1	12
111	2331	70	1098	11	77	1,1	2.1	12
116	2419	76	1071	11	ġò	1.2	2.0	13
114	2518	70 76 76	1135	12	86	1.2	2.1	13
124	2547	78	980	12	80	1.2	1.8	15
128	2381	73	933	12	87	1.1	2,0	14
125	2402	73	1064	ū	75	1,1	2.0	13
136	2630	74	1200	11	69	1,1	2,1	11
138	2869	95	1387	13	98	1.4	2.4	16
137	2569	77 77	1094	ñ	84	1.2	2,1	13

standard deviations

sandard deviations

tandard deviation

Table 26	(continued)
----------	-------------

Age in yrs.	No.	Group ^a	Veight kg.	Age in MOS:	Food energy cal.	Protein C ^{m.}	Calcium Mg.	Iron Eg.	Ascorb: acid Mg.
12	12	I	30.1	149	2488	77	850	13	63
	12 .	II	57.8	149	3096	97	1280	15	109
	66	III	39.6	148	2722	84	1157	13	84
13	6 6	I	36.4	159	2484	75	908	12	77
-	6	II	64.0	162	3024	93	1207	14	75
	32	III	47.0	161	2922	88	1157	14	105
14	5	I	36.6	172	3024	88	960	14	68
	5 7	II .	68.5	173	3152	96	1056	15	60
	27	III	48.4	174	3083	90	1156	14	103
15	4	I	51.3	183	3282	97	1103	16	105
-	5	II	73.3	186	3423	100	1166	17	103
	23	III	60.9	185	3209	91	1192	15	95
16	3	I	47.1	197	3042	85	1160	13	89
	3 3	II	85.2	198	3226	98	1358	14	103
	25	111	63.1	196	3490	101	1327	16	114
17	1	I	44 . 9	209	1843	76	1221	9	57
	1 2	II	88.0	211	2898	90	2046	13	62
	18	III	59.3	210	3541	108	1497	17	108
18	2	I	52.0	228	3236	98	1260	15	60
	4	II	80.4	224	3513	101	1410	15	110
	11	III	63.6	221	3449	10	1084	16	81

.

Age in	Food obergy	Protein	Calcium	Iron	Ascorbic acid	Thiamino	Ribo- flavin	Miacin
E02 .	cal.	6 2.	16.	ng.	MG +	¤ G•	Eg. .	26.
149	2488	77	8 50	13	63	1,2	1.8	14
149	3096	97	1280	15	109	1.4	2.5	16
148	2722	84	1157	13	84	1.3	2.2	15
159	2484	75	908	12	77	1,1	1.8	13
162	3024	93	1207	14	75	1.4	2.3	15
161	2922	88	1157	14	105	1.4	2.2	16
172	3024	88	960 .	14	68	1.4	1.9	17
173	3152	96	1056	15	60	1.5	2.3	17
174	3083	90	1156	14	103	1.5	2.2	16
183	3282	97	1103	16	105	1.5	2.3	20
186	3423	100	1166	17	103	1.6	2.7	19
185	3209	91	1192	15	95	1.5	2.5	16
197	3042	85	1160	13	89	1,5	2.1	13
198	3226	98	1358	14	103	1,4	2.5	17
196	3490	101	1327	16	114	1,6	2.5	17
209	1843	76	1221	9	57	0.9	2.0	10
211	2898	90	1046	13	62	1.3	2.0	14
210	3541	108	1497	17	108	1.7	2,8	18
228	3236	98	1260	15	60	.1.4	3.1	21
224	3513	101	1410	15	110	1.8	2.9	18
221	3449	10	1084	16	81	1.7	2.3	18

. .

•

•

. .

Table 27

Nean Daily Food Energy Value and Mutrient Content of Die of Iowa Children Glassified According to Three Weight Gr

Girls

Age in yrs.	No.	Grow _y	Veight kg.	Age in mos.	Food energy cal.	Protein gm.	Galcium Mg.	Iron Eg.	Asco ac B
6	6	I	17.2	78	1663	<u>5</u> 2	754	8	6
•	š	ĪI	29.2	77	1976	66	1141	ŏ	Ř
	6 5 39	III	21.8	78	2005	61	914	9	8
7	3	Ι.	16.6	89	1942	\$2	807	8	8
•	36	II	34.6	91	1972	67	1021	10	9
	39	III	23.9	89	1993	61	861	9	9 7
8	7 5	I	20.9	101	1744	53	808	8	6
	5	II	35.6	102	2138	68	1277	10	9
	31	III	26.1	100	2070	64	1011	9	7.
9	9	I	22.5	113	2433	73	957	11	8
•	ú	II	42.1	114	2299	72	953	11	8
	42	III	29.5	114	2245	68	957	10	8
10	6	I	25.6	123	2166	63	885	10	8
	11	II	49.0	128	2370	72	1009	12	10
	44	III	33.2	125	2273	68	926	11	8
11	10	I	28.1	136	2046	64	832	10	8
	12	II	50.7	138	2271	70	1013	10	7
	36	III	39.8	137	2318	70	967	10	8

Group

ŧ

I Veights - Minus 2 or 3 standard deviations II Veights - Plus 2 or 3 standard deviations III Veights - Within 1 standard deviation

Table 27

.

Daily Food Energy Value and Mutrient Content of Diets wa Children Classified According to Three Veight Groups

Girls

Age in BOE.	Food energy cal.	Protein.	Calcium	Iron E.	Ascorbio acid Eg.	Thiamine Mg.	Ribo- flavin mg.	Fiacin Mg.
78	1663	52	754	8	68	0.8	1.4	9
77	1976	66	1141	ġ	83	1.0	2.1	10
78	2005	61	914	9 9	64	1.0	1.7	10
89	1942	52	807	8	89	0.9	1.7	10
91	1972	67	1021	10	91	1,1	1.8	10
89	1993	61	861	9	74	1.0	1.6	10
101	1744	53	808	8	67	0.9	1.5	9
102	2138	68	1277	10	90	1,0	2.2	ú
100	2070	64	1011	9	75	1.0	1.8	10
113	2433	73	957	11	81	1,1	1.9	13
114	2299	72	953	11	83	1.1	1.9	12
114	2245	68	957	10	82	1,1	1.8	12
123	2166	63	885	10	85	1.1	1.7	12
128	2370	72	1009	12	100	1.2	2.0	13
125	2273	68	926	11	82	1,1	1.8	12
136	2046	64	832	10	83	1.0	1.7	11
138	2271	70	1013	10	72	1.1	1.9	12
137	2318	70	967	10	82	1.1	1.9	12

. . .

Ŋ

landard deviations

undard deviations

undard deviation

Table	27 (centinued)	
-------	------	------------	--

Age in yrs.	¥o.	Group	Veight kg.	Age in Nos.	Food energy cal.	Protein 5 ^m .	Calcium Mg.	Iron mg.	Ascorb acid ng.
12	13	I	31.5	148	2709	82	1089	13	67
	13 9	II	69.6	149	2259	72	1038	13 11	95
	59	III	45.1	149	2663	82	1106	12	85
13	6	I	31.5	158	2268	71	918	11	70
-	6	II	60.5	161	2772	84	1287	12	78
	32	III	47.2	161	2453	72	954	12	76
14	5	I	41.6	172	2425	72	1102	12	65
	5 8	II ·	61.4	172	2428	71	933	12	89
	24	III	50.0	173	2519	76	982	11	83
15	5	I	44.6	183	2698	84	1040	13	104
-	ģ	II	68.0	186	2588	72	787	12	98
	5 9 24	III	56.3	186	2682	74	911	12	86
16	4	I	46.3	192	2832	75	892	13	140
-	6	II	73.0	197	2118	70	790	10	
	26	III	55.3	198	2277	68	804	11	77 86
17	2	I	45.5	208	2523	75	811	12	77
•	5	II	73.3	209	2068	63	795	10	82
	2 5 18	III	54.6	209	2439	75	812	12	90
18	2	I	46.6	222	2551	84	1067	11	75
	2 2	II	59.6	222	2060	56	588	10	82
	8	III	54.6	222	2471	74	801	12	98

-89-

in Ios.	Jood energy cal.	Protein gm.	Galcium Mg.	Iron mg.	Ascorbic acid Eg:	Thiamine E.	Ribe- flavin E.	Niacin Mg.
L48	2709	82	1089	13	67	1.2	2.1	14
149	2259	72 .	1038	ũ	95	1.1	2.0	13
149	2663	82	1106	12	85	1.3	2.1	14
58	2268	71	918	11	70	1.1	1.7	12
161	2772	84	1287	12	78	1.2	2,4	14
161	2453	72	954	12	76	1,1	1,8	13
L72	2425	72	1102	12	65	1.1	1.8	12
172	2428	71	933	12	89	1,1	1.9	13
173	2519	76	982	n	83	1.3	2.0	13
183	2698	84	1040	13	104	1.3	2.0	15
186	2588	72	787	12	98	1,1	1.7	14
186	2682	74	911	12	86	1.2	1.8	14
192	2832	75	892	13	140	1.4	2.0	13
197	2118	70	790	10	77	1,1	1.6	12
198	2277	68	804	11	86	1.1	1.6	12
208	2523	75	811	12	77	1.3	2.3	14
209	2068	63	795	10	82	1.0	1.4	10
209	2439	75	812	12	90	1.2	1.7	13
222	2551	84	1067	n	75	1.3	2.0	14
222	2060	56	588	10	82	1.0	1.2	11
222	2471	74	801	12	98	1.2	1.6	14

·

•

•

The diets of the boys of heaviest weight had mean energy values above the allowances from 6 to 15 years. The diets of the boys of lightest weight had mean energy values that were below the recommendations except at 9, 10, 11 and 15 years. The mean daily food energy value of the diets of the boys of medium weight conformed closely to the allowances. The values were slightly higher than the allowances to 12 years, but a little below from 12 to 18 years.

The diets of the girls of heaviest weight had mean food energy values that exceeded those of the girls of lightest weight to 13 years of age except at 9 and 12. After 13 years the diets of the girls of lightest weight had mean energy values that were greater than those of the girls of heaviest weight. This difference may reflect an effort on the part of the girls of heaviest weight to restrict their caloric intake. The mean food energy value of the diets of the girls of average weight was not consistently intermediate to the calorie values of the diets of the girls of heaviest weight and of lightest weight.

The mean daily food energy value of the diets of the girls of medium weight approximated the allowances within 100 to 150 calories. The greatest deviation from the allowances occurred at 6, 7 and 16 years.

The girls of heaviest weight and of lightest weight had mean energy food values that fluctuated irregularly about

-90-

the allowances, but the mean daily food energy values of the diets of the girls of heaviest weight (15 to 18 years) were about 300 calories lower than the allowances. The relationship of food energy intake to weight status was more consistent for boys than for girls.

The mean protein content of the diets of the boys of heaviest weight was greater than that of the diets of the boys of lightest weight except for the 10-year-olds. At this age the mean daily protein intake was about the same regardless of weight (see Figure 5).

Except at 15 to 17 years of age the diets of the boys of medium weight had mean daily protein values which were between the corresponding values for the groups of the heaviest weight and of the lightest weight. The mean protein content of the diets of the boys of medium weight always exceeded the allowances by 5 to 10 grams. The boys of heaviest weight had dietary protein values that were greater than the recommendations at all ages except at 15 years. In the group of lightest weight, at five ages the mean daily intake of protein did not meet the allowances. The boys of lightest weight tended to have diets poor in protein both as related to diets of boys of medium weight and as related to the allowances.

The mean protein content of the diets of the girls of heaviest weight indicated a greater protein consumption by them

-91-

Fig. 4 Mean daily food energy value of the diets of lowa children classified according to three weight groups.

CALCULATION OF THE OWNER OWNER OF THE OWNER OWNE

Fig.5 Mean daily protein content of the diets of lowa children classified according to three weight groups.

than by the girls of lightest weight from the ages of 6 to 13 years, except at 9 and 12 years of age. After this age the protein intake of girls of heaviest weight decreased sharply and was poorer than that of the girls who were either of medium or lightest weight. For girls younger than 11 years, the mean protein intake tended to vary directly with the weight classification, but afterwards there was no consistent relationship between weight and protein values. From 6 to 13 years the girls of medium weight had diets with mean protein values that approximated the allowances. The greatest deviation below the allowances occurred at 16 years. From 6 to 12 years the diets of the girls of heaviest weight had mean protein values that exceeded or met the allowances. From 13 to 18 years the mean protein content of the diets of the girls of heaviest weight declined steadily to values 20 grams below the recommended allowances. For 9 out of 13 age groups the girls of lightest weight had protein intakes below the allowances.

At most ages the mean calcium content of the diets of the boys with the lightest weight was less than that of the diets of the boys of the heaviest weight or of medium weight (see Figure 6).

The boys of medium weight had diets with calcium content greater than the allowances only at 6 to 9 years

-94~

Fig. 6 Mean calcium content of diets of lowa children classified according to three groups of weights

....

and at 17 years, whereas at the other ages the calcium intakes were below the allowances. The lightest weight boys had calcium values below the allowances at all ages except 9 years. For the heaviest weight boys the mean daily calcium content approached the allowances except for the 10, 14, 15 and 17 year olds.

To 13 years the mean calcium content of the diet of the heaviest weight girls was greater than that of the lightest weight girls. After 13 years the heaviest weight girls had diets with calcium values below those of the lightest weight girls. Below 12 years the girls of medium weight had calcium intakes that tended to be intermediate between the values of the other two extreme weight groups. Regardless of weight classification, the girls seldom had mean daily calcium intakes equal to the allowances. Heaviest weight girls to 13 years tended, more often than the others, to have calcium intakes equal to the allowances, but after 13 years the calcium intakes of this group diverged most from the allowances.

At most ages the mean daily ascorbic acid content of the diets of the heaviest weight boys was greater than corresponding data for the lightest weight boys, but the medium weight group was not intermediate with reference to the usage of this vitamin.

-96-

The heaviest weight boys had diets with ascorbic acid levels that surpassed the recommendations, except at 13, 14 and 17 years. The mean daily ascorbic acid content of the diets of the lightest weight boys was equal to or greater than the allowances to 10 years, but afterwards was below the recommendations except at 15 years. The boys with medium weight had diets with mean daily ascorbic acid values which exceeded the allowances at most ages.

The heaviest weight girls had diets with mean ascorbic acid content that was greater than that observed for the lightest weight girls at most ages (see Table 26). The heaviest weight girls and the girls with medium weight had diets with mean ascorbic acid contents that either exceeded or approximately met the allowances throughout the age range. Of the three groups the lightest weight girls were the only ones that tended to have diets with less than the allowances in ascorbic acid. Ascorbic acid was the only nutrient for which the diets of the heaviest weight girls of the late teens were superior to those of the lightest weight girls.

As shown by the means the heaviest weight boys usually consumed diets richer in thiamine than were those consumed by the lightest boys. The boys of medium weight had diets

-97-

with mean values that tended to be intermediate between the values of the other two groups.

The thiamine value of the diets of boys of medium weight conformed closely to the allowances at most ages. The consumption of thiamine by the lightest weight boys was generally lower than the recommendations. To 15 years the mean thiamine value of the diets of the lightest weight boys either exceeded or were equal to the allowances.

With the exception of the 9-and 12-year-olds the heaviest weight girls to 14 years tended to have diets containing more thiamine than the diets of the lightest weight girls, but after 14 years the heaviest weight girls had lower consumption of thiamine than had the lightest weight girls.

The mean thiamine value of the diets of the three weight groups tended to fluctuate somewhat below the allowances. After 15 years age the lightest weight girls had diets which exceeded the allowances in thiamine whereas the heaviest weight girls had diets considerably lower than the allowances.

The mean daily riboflavin intake of the heaviest weight and medium weight boys at most ages was greater than the intake for the lightest weight boys. The boys of medium weight consumed diets that contained amounts of riboflavin

-98-

slightly less than the amounts eaten by the boys of heaviest weight. The weight status of the boys roughly paralleled the riboflavin as well as the protein intakes. The riboflavin consumption of boys of medium weight and of the heaviest weight exceeded the allowances at nearly all ages. The boys of lightest weight had diets in which the riboflavin intakes were often below the allowances.

From 6 to 13 years the mean riboflavin value of the diets of the girls of the heaviest weight nearly always surpassed the corresponding figures for the girls of lightest weight. From 13 to 18 years the values for the two groups reversed their positions. At a number of ages the mean daily riboflavin intake of girls of medium weight maintained an intermediate position between the corresponding figures for the groups of the heaviest weight and of the lightest weight.

The girls of medium weight had diets with mean riboflavin content that exceeded the allowances to 12 years, but afterwards were considerably below the recommendations. The mean riboflavin content of the diets of the girls of heaviest weight followed the same trend, only with a precipitous drop after 13 years. The riboflavin content of the diets reached a value 0.6 mg. below the allowances at 18 years, or only two-thirds of the allowances. The girls of lightest weight had intakes with

-99-

riboflavin content which exceeded the allowances in the earlier and later school years, but tended to be less than the allowances from 10 to 15 years.

In general, the heaviest weight boys had mean daily niacin intakes that were above the lightest weight boys, except at the ages of 10, 15 and 18 years. The boys of average weight tended to have mean daily niacin intakes between the values of the two groups (see Table 25).

Except for the 15-year-olds, the boys of medium weight had niacin intakes that were about two milligrams higher than the amount indicated by the allowances. The mean niacin value for the lightest weight boys fluctuated about the allowances, while the heaviest weight boys had mean daily intakes of niacin that were greater than the recommendations.

To 14 years the heaviest weight girls had mean daily niacin intakes greater than those of the lightest weight girls except for the 9- and 10-year-olds. From 15 to 18 years the heaviest weight girls had dietary niacin values less than those observed for the lightest weight girls.

The girls of medium weight had niacin values that either exceeded or met the allowances, whereas the lightest weight girls had niacin intakes below the allowances at several ages. The heaviest weight girls had diets with

-100-

niacin values that either exceeded or approximated the allowances from 6 to 16 years; afterwards the values declined to nearly 2 milligrams below the recommendations.

It may be noted from Tables 26 and 27 that the girls of heaviest weight had diets with mean energy food value and nutrient contents that were in general larger than those observed for the girls of lightest weight from 6 to 13 years; afterwards the relative positions were reversed. The diets of the teen-age girls of heaviest weight were poorer than those of the girls of lightest weight or of medium weight in all respects except ascorbic acid. The overweight girls may have been attempting to reduce their intake of food. The diets of these girls may be expected to lead to an unfavorable nitrogen balance, since the caloric intake and the protein content of the diets were below the allowances. Leverton (1951) observed that college girls could not maintain nitrogen balance on a low protein intake, if the caloric value of the diets did not meet the energy needs of the girls.

Since the Iowa girls had an insufficient intake of protein, calcium and riboflavin, it appeared that milk was not liberally used by the girls.

-101-

<u>Concentrations of various blood constituents</u>. The serum ascorbic acid concentrations of the three groups of boys and girls classified according to weight tended to decline with age to a low level in the middle teens. Some of the poorest concentrations were observed among the heaviest weight boys and girls. These low concentrations are not associated with especially low intakes of vitamin C. At 14 years the heaviest weight boys and girls had a calculated mean ascorbic acid intake of 60 and 90 milligrams, respectively, and a mean serum concentration of 0.3 and 0.2 milligram. The low serum ascorbic acid concentrations at 14 years for the overweight boys and girls and at 15 years for the lightest weight and medium weight boys and girls are noteworthy (see Figure 7).

The heaviest weight children may be utilizing the vitamin more rapidly in the formation of new tissues, so the decrease occurred a year earlier, than for the lightest and medium weight children who are accumulating tissue at a slower rate. The concentrations did not reach as low a level for the lightest and medium weight groups. The observation needs further study for the serum ascorbic acid concentration may not only reflect the rapid use of the vitamin by the body for tissue formation, but also the intake of the vitamin-C-rich foods over a period of time.

-102-

Fig. 7 Meam serum ascorbic acid concentrations of lowa children classified according to three weight groups.

The boys of heaviest weight had serum concentrations that tended to be larger than those of the boys of lightest weight from 6 to 12 years. The boys of medium weight had concentrations that were nearly always larger than those of the boys of lightest weight (see Table 28). The girls of heaviest weight had serum ascorbic acid concentrations that tended to be lower than those of the girls of lightest weight. The boys and the girls of medium weight tended to have concentrations that varied less from age to age than did the concentrations of the other groups of boys and girls.

Bessey and Lowry (1947) suggested that 0.7 milligram per cent was satisfactory level of serum ascorbic acid concentration for boys and girls. The boys of heaviest weight had concentrations 0.7 milligram per cent or higher from 6 to 12 years. The boys of lightest weight had mean concentrations that were below 0.7 milligram per cent, except for 6, 9 and 11 years. The boys of medium weight had concentrations of 0.7 milligram or better through 13 years.

The girls of heaviest weight had concentrations above 0.7 milligram per cent except at 9, 13, 14 and 15 years. From 6 to 11 years the girls of lightest weight had serum ascorbic acid concentrations above 0.7 milligram per cent, then followed a decline which reached a low level of 0.2 milligram per cent. The concentrations of the girls of medium weight were above 0.7 milligram per cent to 10 years, then

-104-

Groups ^a	1	I		II		III					
Age yr.	No.	Mg.%	No.	Mg.%	No.	Mg.%					
Boys											
6 7 8 9 10 11 12 13 14 15 16 17 18	3227427251212	1.08 0.62 0.68 1.00 0.58 0.58 0.53 0.55 0.56 0.56 0.40 0.60 0.76 0.28	324 534 0 531 321	1.02 1.15 0.99 1.08 1.11 0.72 0.86 0.38 0.31 0.52 0.74 0.36 0.13	15 21 32 25 18 29 10 47 10 47	0.86 0.85 1.09 0.80 0.93 0.72 0.79 0.64 0.50 0.71 0.61					
Girla											
6 7 8 9 10 11 12 13 14 15 16 17 18	2249262214112	1.45 1.58 0.93 1.23 0.73 0.61 0.68 0.58 0.44 1.57 0.22 0.80	34 544 96 31 34 21	1.20 0.95 0.91 0.56 0.93 0.84 0.79 0.42 0.19 0.47 0.72 1.20 1.66	19 25 12 29 29 20 18 10 7 4	.86 1.02 1.04 1.02 0.99 0.63 0.76 0.50 0.50 0.56 1.07 0.94					

Mean Serum Ascorbic Acid Concentration of Iowa Children Classified According to Weight Groups

Table 28

^aGroup I--Weights minus 2 or 3 standard deviations Group II--Weights plus 2 or 3 standard deviations Group III--Weights within ± 1 standard deviations

they declined to 0.2 milligram per cent at 15 years. In the next three years the concentrations were erratic in trend. The girls of medium weight had concentrations that were above 0.7 milligram per cent to 10 years, then they declined steadily to 15 years.

From these data, it appeared that the amount of vitamin C recommended as an adequate intake by the National Research Council was not sufficient to produce a mean blood concentration equal to 0.7 milligram per cent at all ages. Also in view of the deviations noted with age, the question is raised as to whether 0.7 milligram per cent is a satisfactory level for children of all weights and ages.

The decrease with age in the serum carotenoid concentration of the three groups of boys and girls may have a physiological significance. This trend was particularly outstanding for the children of heaviest weight (see Figure 8). The low concentrations were attained by the boys in the three groups at 15 years and by the girls of heaviest and medium weight at 13 years. Since the disappearance of the carotenoids in the blood may be associated with the conversion to vitamin A these observations suggested the greater use of vitamin A by rapidly growing children than by the less rapidly growing children.

The boys of heaviest weight had serum carotenoid concentrations that were higher than those of boys of lightest weight

-106-

Fig. 8 Mean serum carotenoid concentrations of lowa children classified according to three weight groups.

+

and the state of the second second

-107-

10 years; from 11 to 18 the values tended to be lower (see Table 29).

The girls of heaviest weight had serum carotenoid concentrations greater than those of the girls of lightest weight from 6 to 10 years; afterwards the order was reversed to 16 years. The girls of medium weight had concentrations that conformed more closely to those of the girls of lightest weight than those of girls of the heaviest weight.

The mean serum alkaline phosphatase concentrations of the children of lightest weight and of heaviest weight fluctuated more than the concentrations of the children of medium weight (see Figure 9). The decline toward adult levels began at 13 years for the boys of lightest weight and of medium weight, but at 12 years for the boys of heaviest weight. The descent toward adult levels was more rapid for the boys of heaviest weight than for the boys in the other two groups. The boys of medium weight had values that decreased regularly toward the adult levels while the other two groups fluctuated during the decline (see Table 30).

From 6 to 10 years the girls had phosphatase concentrations that corresponded to weight status. The girls of heaviest weight reached the peak at 10 years, the girls of medium weight at 11 years, and the girls of lightest weight at 12 years. It appears from these data that with the girls the concentration of phosphatase may be associated

-108-

Mean Serum Carotenoid Concentrations of Iowa Children Classified According to Weight Groups

Groups ^a	1		·····	II]	
Age yr.	No.	Mog.%	No.	Mcg.%	No.	Mcg.%
		Boy	<u>/S</u>			
6 7 8 9 10 11 12 13 14 15 16 17 18	4 3264 18251122	98 148 82 108 74 150 115 90 91 86 218 84 107	324 534 9531 321	118 194 130 141 145 96 100 91 54 44 62 116 33	14 208 227 218 9 92 93 7	106 114 128 129 118 105 109 68 75 142 102
		Gi	rls			
6 7 8 9 10 11 12 13 14 15 16 17 18	4 248 261 204 1 1 2	181 102 87 97 116 120 92 104 103 98 86 126	74 554 9571 74 81	198 142 110 128 122 81 60 46 49 81 100 119 165	17555206028974	129 121 125 130 112 105 93 99 103 88 125 134

^aGroup I--Weights minus 2 or 3 standard deviations Group II--Weights plus 2 or 3 standard deviations Group III--Weights within ± 1 standard deviations

Fig. 9 Mean serum alkaline phosphatase concentration of Iowa children classified according to three weight groups.

Groups ^a]	[]	I	IJ	I
Age yr.	<u>No.</u>	NP.U.b	No.	NP.U.b	No.	NP.U.b
		Bo	ya			
6 7 9 10 11 12 13 14 15 16 17 18	4 3974 888 954 94	3.90 5.03 4.41 7.008 7.568 7.568 7.588 7.588 3.530 3.530 3.42	384 5540 531 581	4.32 5.085 5.34 5.35 5.35 5.99 7.99 7.81 7.81 7.81 7.81 7.81 7.81 7.81 7.81	15 23 23 28 20 7 9 20 7 19 92 10 4 7	4.63 5.132 5.5.4.07 5.6.5 5.4.5 5.5.5.5 5.5.5.5 5.5.5.5 5.5.
			lrls			
6 7 9 10 11 12 13 14 15 16 17 18	3249202214112	4.95 3.94 4.195 4.195 7.18 2.37 5.90 2.32 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.1	74 55480 2124 21	5.18 6.40 5.81 5.04 6.78 3.04 3.58 3.58 2.58 1.94 1.15 2.22	21 26 55 23 96 12 90 74	4.85 4.87 5.51 5.21 5.20 4.17 2.080 1.56

Mean Serum Alkaline Phosphatase Concentrations of Iowa Children Classified According to Weight Groups

Table 30

^aGroup I--Weights minus 2 or 3 standard deviations Group II--Weights plus 2 or 3 standard deviations Group III--Weights within ± 1 standard deviations

å.

^bNitrophenol units.

-111-

with weight. To the time that the concentrations reached a peak the girls of heaviest weight had the highest concentrations, the girls of medium weight the intermediate and the girls of lightest weight the lowest. The peak was reached at 10 years by the girls of heaviest weight, at 11 years by the girls of medium weight and at 12 years by the girls of lightest weight.

The hemoglobin concentrations in the blood of the boys of lightest weight were in general lower than the values for the boys of heaviest weight or of medium weight (see Figure 10). The latter two groups had concentrations that were about the same. The girls did not exhibit a well-defined difference between the groups with the heaviest weight and lightest weight as did the boys. After 12 years the girls of average weight tended to have higher hemoglobin concentrations than had the other two groups. The lower hemoglobin concentration of the girls of heaviest weight at 13 years may be associated with the poor diets, previously described for this group.

The differences in nutrient intake and in serum concentrations of the various blood constituents and in physical status that have been noted in the three groups cannot be explained by age, for the difference between the children of lightest weight and of heaviest weight ranged from five months to no difference. The maximum difference five months occurred twice, namely, for the 9-year-old boys and

-112-

Fig. 10 Mean hemoglobin concentration in blood of lowa children classified according to three weight groups

-113-

Groupsa		1	I	I	III		
Age yr.	No.	Gm. %	No.	Om . %	No.	Gm.%	
		E	oys				
6 7 8 9 10 11 12 13 14 15 16 17 18	54 27732664 322	11.6 12.3 12.0 12.3 12.3 12.9 12.6 12.4 13.0 13.8 14.2 14.6 14.6	34 57662675324	10.1 12.4 12.3 13.3 12.5 13.0 13.5 13.0 14.0 14.8 14.4 14.9 14.8	28 44 34 36 28 38 28 12 12	12.2 13.0 13.1 13.36 13.6 13.6 13.3 14.2 14.2 14.2 14.2	
		G	irls				
6 7 8 9 10 11 12 13 14 15 16 17 18	6369603655482	12.1 12.6 12.4 12.6 12.8 12.7 13.6 12.4 12.5 12.7 12.1 14.2 12.1	56 50 10118689652	12.6 12.8 12.4 12.7 12.8 13.4 13.1 12.6 12.6 12.6 12.6 12.5 13.0	378 70 367 24 35 24 4 35 24 4 68 8	12.4 12.3 12.6 12.5 13.5 13.5 13.8 13.8 13.8 13.1 12.3 13.1 12.6	

^aGroup I--Weight minus 2 or 3 standard deviations Group II--Weight plus 2 or 3 standard deviations Group III--Weight within ± 1 standard deviations

Table 31

Mean Hemoglobin Concentrations of Blood of Iowa Children Classified According to Weight Groups

10-year-old girls. The average difference for the boys was two and one-half months; and for the girls two months.

Summary

1. In height the girls and boys of heaviest weight were the tallest, those of medium weight were intermediate, and those of lightest weight, the shortest.

2. With a few exceptions the boys of heaviest weight had diets with food energy and nutrient contents that were greater than those observed for the boys of lightest weight.

3. In general, the girls from 6 to 13 years of the heaviest weight group had dietary intakes of the various nutrients that were greater than those of the girls of the lightest weight. From 13 to 18 years the girls of heaviest weight had dietary intakes that were lower than the intakes of the girls of lightest weight.

4. There were some exceptions at the various ages, but in general, the boys and the girls with medium weight tended to have dietary intakes of the various nutrients that were intermediate to the intakes of the other two groups.

5. The boys of medium weight had diets which either exceeded or approximated the allowances for food energy and the dietary nutrients. The greatest deviation was in the mean calcium intake.

-115-

6. The girls of medium weight to 13 years had mean intakes that either exceeded or approximated the allowances except for thiamine and calcium.

7. The boys of heaviest weight and the girls of heaviest weight to 13 years tended to have mean nutrient intakes that either surpassed or approximated the suggested allowances. The older girls of heaviest weight had diets with mean food energy and nutrient values less than the allowances, except ascorbic acid.

8. Except for calcium, the boys of lightest weight and the girls of lightest weight from 6 to 13 years tended to have more age groups with dietary intakes of the various nutrients that were less than the allowances, than did the other two groups of children. With the exception of calcium the girls of lightest weight from 13 to 18 years had intakes of the various nutrients that were nearly always better than the allowances.

9. The serum ascorbic acid concentrations of the girls and boys in the three weight groups tended to decrease with age until they reached a low level at 14 years for the childrend of heaviest weight, and at 15 years for the children of lightest weight and of medium weight. The variations in serum ascorbic acid concentrations from age to age was most evident with the children of heaviest weight.

-116-

10. The serum carotenoid concentration apparently decreased with age, so that the lowest concentration was observed in the heaviest weight boys and girls at 13 and 15 years, respectively.

11. The peak alkaline phosphatase concentration was reached by the heaviest weight boys at 12 years, and by the lightest weight and medium weight boys at 13 years. The descent to adult levels was more rapid for the heaviest weight boys than for the other two groups.

12. The peak of the mean serum alkaline phosphatase concentrations was reached by the heaviest weight girls at 10 years, by the girls of average weight at 11 years and by the lightest weight girls at 12 years. The decline toward adult level was rapid for the heaviest weight girls.

13. The mean hemoglobin concentration in the blood of the lightest weight boys was lower than the mean concentrations for the other two groups of boys. There was very little difference between the hemoglobin concentrations of the medium weight and heaviest weight boys. The hemoglobin concentrations of the three groups of girls displayed no outstanding differences.

-117-

Heights of Iowa Children

Height is a measure of linear growth. An increase of one inch does not mean an increase throughout the length of the body. It may be an increase in the area of the head and neck, in the trunk, or in the leg. The place where this gain in height takes place depends largely on the age at which the gain in height is made.

Inherited tendencies influence the ultimate expression of linear growth. Tallness is dominant over shortness. The children of tall parents tend to be tall and children of short parents, short. This family trait will be most evident at periods of rapid growth (Winchester, 1951).

Like weight measurements, the height measurements are subject to variations. The time of day is another important factor that induces a variation in height. If the heights of children are to be observed over a period of time, in order to have comparable data, the height measurements should be made at the same time of day. Children are shorter at noon than they are upon rising, and still shorter in the evening than at noon (Boyd, 1929). It is also very important to make the measurement as accurately as possible. The techniques used should be standardized and employed carefully so that the difference due to the way the measurement is made is at the minimum

Mean heights of total sample of Iowa children

The children in this study were measured in the later half of the morning. Heights were measured against a paper scale which was glued against an upright board placed at right angles to a platform. The scale was prepared by the Iowa Child Welfare at the University of the State of Iowa. A right-angle head piece was used to determine the point on the measuring scale on the level with the highest point of the child's head.

The boys made the greatest height increment between the ages of 12 and 13 years and between 14 and 15 years. The variation in the individual observations at these ages became quite large, and remained highly variable through 18 years (see Table 32). The girls made the greatest increment between 8 to 10 years and 13 to 14 years. The variations among the individual observations on the heights of girls at each age increased to 10 years, then declined slowly so the ranges of heights for girls were about the same at each age from 14 to 18 years.

<u>Comparison of the heights of Iowa children with those of</u> other studies

The boys in this study, who were selected randomly from a large population of Iowa school-age boys, were

-119-

Table	32
-------	----

-120-

Mean Heights of the Iowa Children

Age yr.	No.	Mean cm.	Standard deviation cm.	Standard error cm.	Range cm.
			Boys		
678900 10112314 1516718	38 55 50 50 4 4 24 33 18	118 124 131 136 140 144 156 161 171 170 173 172	4.7 5.5 5.8 5.1 10 7.8 10 7.8 10 7.8 8 .1 5.3 58	0.7 0.8 0.8 0.7 0.9 0.8 1.3 1.6 1.1 1.2 1.6 2.1	109 = 126 $113 = 137$ $121 = 145$ $122 = 149$ $127 = 153$ $126 = 159$ $127 = 169$ $129 = 172$ $133 = 176$ $158 = 187$ $150 = 184$ $156 = 187$ $157 = 187$
			Girls		
678901123145078	5084461824478762	118 123 127 133 141 146 151 153 159 161 162 163	4.56 5677775685 546	0.7 0.9 0.8 0.9 1.0 0.8 1.1 0.8 1.1 0.9 0.9 1.9	106 - 126 112 - 134 116 - 142 118 - 148 124 - 159 131 - 162 137 - 169 138 - 168 149 - 170 147 - 175 154 - 171 154 - 174

taller than the boys observed by Jackson and Kelly at Iowa City (see Table 33). These boys were also taller than the Iowa boys measured by the Bureau of Human Nutrition and Home Economics (1941). The Iowa boys in this study were not so tall as the Chicago boys observed by Gray and Ayres (1931) and the Denver boys measured by Maresh (1948).

The Iowa girls in this random sample of school age girls were taller than the girls measured at Iowa City (Jackson and Kelly, 1945) or by the Bureau of Human Nutrition and Home Economics (1941) (see Table 34). They tended to be shorter than the girls measured at Chicago by Gray and Ayres (1931) and at Denver by Maresh (1948).

Study of the tallest, shortest and average height children

To study the dietary intake and the blood constituents of children of different heights, each age-sex group was divided into three groups according to the mean and standard deviation of the group. The children in Group I consisted of girls and boys whose heights were in the second or third standard deviations below the mean for the mean for the 13 age-sex group, Group II contained children whose heights were in the second or third standard deviations above the means and Group III contained the children who were within plus or minus one standard deviation.

-121-

Comparison of Mean Heights of Iowa School Children with Similar Data fr

Joys

Age in	1	Iowa (1953) ^a			ova (1941)p	L	owa (1945	;)°	Chiong		
<u>yrs,</u>	No,	Nean	s.d.	Xo.	Nean	s.d.	No,	Nesa	s.d.	No.	H4	
		- CIL	CR		C				C		(
6	38	117.5	4,74	417	116.8	5.34	•	116.1	4.06	114	าม	
7	58	124,1	5,22	429	122.5	5.04	•	121.9	5.08	143	12	
8	53	130.9	5.50	544	128,4	5.56	-	128.0	6.10	147	13:	
9	55	135.6	6,22	483	133.6	5.94	-	133.6	5.99	167	13:	
10	60	139.5	5.76	554	137.6	6.94	-	138.9	5.59	173	14:	
11	50	144.1	6.56	501	143.1	6.71	•	143.2	6.10	201	14	
12	90	148.3	7.12	321	147.1	7.72	•	147.8	6.35	247	15	
13	4 4	156.5	8.63	229	153.1	8.16	-	153.2	7.62	29 3	15	
14	40	160.7	10,11	168	160.3	8.49	-	159.3	8.64	373	16	
15	32	171,1	6.51	-	-	-		165.1	8.64	36 2	16	
16	34	170.4	7.32	-	-	-	-	169.7	7.62	29 2	17	
17	21	172.8	7.52	-	•	-	-	173.5	7.62	2 29	17	
18	18	172.4	8,82	-	-	-	-	174.2	8.64	129	17	

apresent study

^bU.S.D.A. miscellaneous publication No. 366

CJackson and Kally (1945)

^dGray and Ayres (1931)

•Maresha (1948)

Beights of Iowa School Children with Similar Data from Selected Studies

Joys

iona (1941	() _р	1	ova (1945	;)°	Oh	icago (19)31) ^d	De	aver (194	18) [•]
Xean	s.d.	Ho.	Nean	s.d.	No.	Nean	s.d.	Xo,	Nean	s.d.
CIR			CIL				cilit			cM
116.8	5.34		116.1	4.06	114	118.6	4.85	175	120.7	4.20
122.5	5.04	٠	121.9	5.08	143	124.7	5.23	164	127.3	4.39
128.4	5.56	-	128.0	6,10	147	131.1	5.28	169	132.7	4.66
133.6	5.94	•	133 . 6 [.]	5.59	167	135.8	5.81	164	137.8	4.74
137.6	6.94	•	138.9	5.59	173	141.2	5.13	151	142,4	4.90
143.1	6.71	-	143.2	6,10	201	145.4	6.62	142	146.7	5.42
147.1	7.72	-	147.8	6.35	247	150.3	6.74	135	151.9	5.67
153.1	8.16	-	153.2	7.62	293	156.4	7.29	123	158.0	6.54
160.3	8.49	-	199.3	8.64	373	162.4	7 .79	97	164.9	6.84
-	-	-	165.1	8,64	362	168.5	7.73	71	170.6	6.41
-	-	-	169.7	7.62	29 2	172.8	6.71	48	175.2	5.11
-	-	-	173.5	7.62	229	175.2	6.14	39	176.4	4.59
•	-	-	174.2	8.64	129	176.1	6.39	58	179.5	6.35

on No. 366

Comparison of Mean Heights of Iowa School Children with Similar Date

dirls

Age in	I	own (195	3) *	· Ie	wa (1941	ور	Ic	nna (1945)°	Ohie
J18.	Xo.	Xean	s.d.	No.	Nean	s.d.	No.	Nean	d.	No.
		CIR	CIL		C					
6	50	117.8	4.85	445	116.3	4.90	-	115.1	4.32	74
7	48	122.6	6.44	535	121.9	5.17	-	120.9	5.33	90
8	44	126.7	5.48	492	127.8	6.14	-	126.7	5.33	100
9	64	133.4	6.64	539	132.7	6.21	-	132.6	5.84	122
10	61	140.8	7•34	542	138.3	6.58	-	137.7	5.84	110
11	58	146.0	7.56	540	144.1	7.00	-	143.5	6.60	139
12	82	151,4	7 .09	323	149.9	7.22	-	150.4	7.11	126
13	44	153.2	7.48	181	153.9	7.21	-	156.0	6.35	124
14	37	159:4	5.14	134	158.6	6.23	-	159.5	5.59	108
15	38	161.2	6.66	•		•	-	160,8	4.83	96
16	37	160.5	5.59	-	-	-	-	161.3	5.33	86
17	26	162.5	4.79	-	•	-	-	161.3	6.10	86
18	12	163.2	6.54	-	-	-	-	161.0	6.10	51

*Present study

4

^bU.S.D.A. Miscellaneous Publications No. 366

GJackson and Kelly (1945)

^dGray and Ayres (1931)

Maresh (1948)

1 Heights of Iowa School Children with Similar Data from Selected Studies

Hirls

leva (1941))	I	Ieva (1945) ^c			leage (19	31) ^d	Denver (1948)*			
Nean	s.d.	No.	Nean	s.d.	No.	Xean	s.d.	No.	Ness	s.d.	
CM	C		CR	C		CIR	CIII				
116.3	4.90	•	115.1	4.32	74	118.0	4.48	145	120.6	5.36	
121.9	5.17	-	120.9	5.33	90	124.1	4.76	146	126.5	5.96	
127.8	6.14	-	126.7	5.33	100	130.7	5.62	136	132.7	5.76	
132.7	6.21	-	132.6	5.84	122	135.9	5.90	118	138.6	6.32	
138.3	6.58	-	137.7	5.84	110	140.2	6.09	104	144.1	7.20	
144.1	7.00	-	143.5	6.60	139	146.0	6.99	100	150.3	7.65	
149.9	7.22	-	150.4	7.11	126	152.0	7.47	93	156.4	7.50	
153.9	7.21	-	156.0	6.35	124	157.2	7.24	92	161.7	6.73	
158.6	6.23	-	159.5	5.59	108	160,1	6.82	73	165.2	5.69	
-	-	-	160.8	4.83	96	163.0	5.89	43	16 6 . 4	5.89	
-	-	-	161.3	5.33	86	162.9	5.41	34	167.3	5.35	
-	-	-	161.3	6.10	86	163.9	6.24	21	165.9	4.45	
	-	-	161.0	6.10	51	163.7	3.93	28	165.8	3.90	

Lons No. 366

1

ىنىيەر بەر يېرىكۈنۈ ئۆرمەردۇرىيىدۇرىيىدە بەت ھە

 <u>Physical status</u>. It may be observed in Figures 11 and 12 that the children in Group I were short, in Group II were tall, and in Group II, average according to the growth charts prepared from the data observed at the Iowa Child Welfare Research Station. In the following discussion Group I will be referred to as the "shortest", Group II as the "tallest", and Group III as "average".

In all age-sex groups the tallest children weighed more than the shortest children (see Table 35). Except for the 16 year old girls, the average children had mean intermediate weights to the mean weights of the other two groups. The shortest girls from 14 through 15 years apparently were heavy for their height. The mean heights for the short girls (14 to 17 years) were below the minus one standard deviation and the weights were between the 16th and 84th percentile (see Figure 12). The mean heights of the girls in Group III were close to the mean on the chart, but the weights were above the median weight on the chart, therefore this group of girls tended to be a little heavy for their height. To a less marked degree the boys indicated the same tendencies.

-124-

Figure 11. The heights and weights of Iowa boys classified according to three height groups.

-126-

Figure 12. The heights and weights of Iowa girls classified according to three height groups.

ŧ

-128-

An equilation provides the state of the stat

-129-

Groups ^a	· · · · · · · · · · · · · · · · · · ·	I		II	I	III	
Age yr	No.	Kg.	No.	Kg.	No.	Kg.	
		1	Boys				
6 7 8 9 10 11 12 13 14 15 16 17 18	6965074285524	19.8 21.9 24.1 31.0 329.1 36.1 58.5 58.5 58.5 9	11 12 10 88 84 16 66 55 24	25.8 38.1 37.3 38.3 52.3 55 55 56 71.6 71.1	205602562279	21.8 24.5 22.2 3360.3 84.9 60.3 84.9 65.7	
		<u>q</u>	<u>Jirls</u>				
6 7 8 9 10 11 12 13 14 15 16 17 18	766 98 9354 54 4 1	17.56 21.16 221.16 236 235 4 335 4 55 78 3 54 55 8 3 5 4 55 8 3 1	606077476654 m	26.4 29.9 31.0 46.9 53.6 53.6 55 54.4 63.7 55 55.7	372222624624277778 33444453277778	22.82 23.20 225.28 235.20 235.28 255.28 255.28 255.28 255.28 255.28 255.28 255.28 255.28 255.28 255.28 255.28 255.28 255.28 255.25 255.55 255.	

Mean Weights of Iowa Children Classified According to Height Groups

^aGroup I --Height minus 2 or 3 standard deviations Group II --Height plus 2 or 3 standard deviations Group III--Height within ± 1 standard deviations

I

<u>Nutrient intake</u>. In Tables 36 and 37 are presented the mean food energy value and nutrient content of the diets of the three groups of children classified according to the three levels of height.

In general the tallest boys tended to have diets with larger mean daily energy food values than the shortest. At certain ages the boys of average height had diets with food energy values that were between the corresponding values of the two other groups (see Figure 13). The tallest boys had diets with mean food energy values that either exceeded or approximated the allowances, whereas in this respect the shortest boys had diets below the allowances except at 6, 7, 8, 10 and 11 years of age. The boys of average height had diets with mean values that approximated the allowances at all ages, although they tended to be slightly higher to 11 years and slightly lower afterwards.

The differences between the mean energy value of the diets of the tallest and shortest girls were less consistent than those noted for the boys. The tallest girls to 12 years had diets with mean energy values above the allowances but afterwards they were equal to or less than the allowances. The shortest girls had mean energy values that were more often below the allowances than above. On the whole

-130-

Mean Daily Food Energy Value and Mutrient Content of Die of Iowa Children Classified According to Three Height Gr

Boys

ingen für förhattigan sind The strike och attriketer 2

Age in yrs.	No.	Oroup ^a	Height om.	Age in mos.	Food energy cal.	Protein E .	Calcium mg.	Iron ng.	Ascori acii
6	6	I	110	76	2081	68	1111	9	93
•	11	ĨI	124	80	2216	67	1056	10	88
	20	ĪĪI	116	78	2229	66	1049	9	73
7	9	I	117	88	2280	66	1068	10	74
•	9 12	II	132	91	2250	69	1037	10	87
	35	III	123	89	2108	64	1012	9	69
8	7	I	124	101	2151	66	1040	9	64
-	10	II	140	101	2406	74	1107	ú	92
	36	III	130	101	2196	70	1114	10	75
9	5	I	124	112	2118	65	976	11	97
•	5 8	II	145	116	2782	80	1157	12	71
	40	III	134	113	2402	74	1096	11	71 86
10	10	I	131	126	2459	77	1031	12	7(
	8	II	149	127	2383	74	1025	12	91
	42	III	140	125	2413	73	1047	11	91 7:
11	7	I	133	137	25 62	77	1165	11	8;
	7 8	II	154	138	2998	100	1306	14	10
	35	III	144	137	2538	75	1080	11	8

Groups	Heights
I	Minus 2 or 3 standard deviations
II	Plus 2 or 3 standard deviations
111	Within \pm 1 standard deviation

•

san Daily Food Energy Value and Mutrient Content of Diets f Iowa Children Classified According to Three Height Groups

~	
•	

Age in MOB.	Food energy cal.	Protein gm.	Calcium mg.	Iron ng.	Ascorbic aoid Mg.	Thiamine =g.	Ribo- flavin E.	Fiacir Eg.
76	2081	68	1111	9	93	1.1	1.9	11
80	2216	67	1056	10	88	1,1	1,8	11
78	2229	66	1049	9	73	1.0	1,9	11
88	2280	66	1068	10	74	1.0	1,9	12
91	2250	69	1037	10	87	1.0	1.9	
89	2108	64	. 1012	9	69	1.0	1,8	12 11
101	2151	66	1040	9	64	1.1	1.9	10
101	2406	74	1107	ú	92	1.2	2.0	13
101	2196	70	1114	10	75	1,1	2.0	n
112	. 2118	65	976	11	97	1.0	2.0	11
116	2782	80	1157	12	77	1.2	2.0	13
113	2402	74	1096	11	86	1.2	2.0	13
126	2459	77	1031	12	70	1.2	2.0	15
127	2383	74	1025	12	94	1.1	2.0	14
125	2413	73	1047	11	75	1,1	2.0	13
137	2562	77	1165	11	83	1.2	2.0	12
138	2998	100	1306	14	105	1.5	2.4	12
137	2538	75	1080	īi	82	1.2	2.0	13

1,

- <u>- 1</u>

lard deviations

urd deviations

lard deviation

Table 36	(continued)
----------	-------------

Age in yrs.	No.	troup [®]	Neight cm.	Age in mos.	Food energy dul.	Protein ga.	Calcium Mg.	Iron #g.	Ascori acid Eg.
12	14	I	138	149	2557	80	927	12	69
	14	II	160	150	3099	96	1326	14	109
	62	III	148	149	2700	84	1136	13	82
13	3	I	145	158	2499	65	688	12	71
-	3 6	II	170	162	3794	98	1396	14	77
	35	III	151	161	2778	84	1103	13	100
14	7	I	145	172	3041	89	976	14	76
_,	6	11 .	173	176	3219	94	1193	16	86
	7 6 26	III	162	174	3193	94	1127	14	100
15	5	I	162	185	3339	100	1106	16	106
-	5 5	11	182	186	3413	100	1086	18	118
	22	III	165	186	3196	91	1213	15	90
16	4 5	I	158	200	3391	98	1272	17	122
	5	II	181	195	3633	102	1409	16	106
	22	III	164	196	3378	99	1300	15	109
17	2	I	159	207	2129	81	1144	10	96
•	2 2	II	186	214	3870	111	1544	17	92
	17	III	172	208	3493	107	1464	17	103
18	4	I	161	224	3722	112	1091	17	79
	4	II	183	224	3333	100	1291	14	88
	9	III	173	222	3773	112	1295	17	96

50 11 102.	Food energy dul.	Protein gn.	Calcium Mg.	Iron ¤g.	Ascorbic acid E.	Thiamine FG.	Pibo- flavin =6.	Hacin Mg.
49	2557	80	927	12	69	1.3	1.8	14
.50	3099	96 -	1326	14	109	1.4	2.5	16
.49	2700	84	1136	13	82	1.3	2.2	16
.58	2499	65	688	12	71	1.1	1.4	11
62	3794	98	1396	14	77	1,4	2.5	12
.61	2778	84	1103	13	100	1.3	2.2	15
.72	3041	89	976	14	76	1.5	1.9	17
76	3219	94	1193	16	86	1.5	2.4	17
74	3193	94	1127	14	100	1.5	2.3	17
85	3339	100	1106	16	106	1.6	2.4	20
86	3413	100	1086	18	118	1.7	2.6	19
86	3196	91	1213	15	90	1.5	2.5	15
00	3391	98	1272	17	122	1.7	2.4	18
95	3633	102	1409	16	106	1.6	2.5	16
96	3378	99	1300	15	109	1.6	2.5	17
07	2129	81	1144	10	96	1,1	2.0	13
14	3870	111	1544	17	92	1.7	1.8	19
60	3493	107	1464	17	103	1.7	2.7	18
24	3722	112	1091	17	79	1,8	2.4	21
24	3333	100	1291	14	88	1.6	2.8	20
22	3773	112	1295	17	96	1.9	2.8	19

.

•

.

• •

Table 37

Nean Daily Food Energy Value and Mutrient Centent of Dist of Iova Children Classified According to Three Height Gre

6 4	rle
- WA	540

Age in yrs,	Xo.	Group [®]	Height: cm.	Age in Nos.	Food energy cal.	Protein gm.	Calcium Mg.	Iron ¤5•	Ascorbi acid E.
6	7	I	110	78	1757	55	838	9	60
•	6	ĪI	124	81	1932	55 61	1040	ģ	95
	37	III	118	78	1995	61	911	9 9	63
7	6	Ι.	114	88	2086	61	829	10	66
•	10	II	132	91	1884	62	913	9	79
	32	III	122	89	1975	60	879	9	78
8	6	I	118	99	1790	49	674	8	72
	6	II	136	101	2266	74	1236	11	107
	31	III	126	101	2023	64	1039	9	70
9	9	I	123	112	2367	71	927	11	84
	10	II	144	115	2341	75	1041	11	76
	43	III	133	114	2304	70	942	11 11	83
10	8	1	129	123	2108	63	820	11	78
	7	II	154	128	2330	74	1069	12 11	88
	46	III	141	125	2315	68	955	11	88
n	9	I	134	136	2030	62	800	10	75
	9 7	II	158	142	2698	82	1142	12	79
	42	III	147	137	2226	68	1021	10	79 81

.

I	Minus 2 or 3 standard deviations
II	Plus 2 er 3 standard deviations
III	Within ± 1 standard deviation

Table 37

Daily Food Energy Value and Mutrient Content of Diets wa Children Classified According to Three Height Groups

01rls

50 D. D.B.	Food energy onl.	Protein gm.	Calcium FS-	Iron #6•	Ascorbic acid mg.	Thiamine Mg.	Ribo- flavin 26.	Miacin Mg.
78	1757	55	838	9	60	0.9	1.5	10
B1	1932	61	1040	9	95	1.0	1.9	10
78	1995	61	911	9 9 9	63	1.0	1.7	10
88	2086	61	829	10	66	1.0	1.7	12
91	1884	62	913	19	79	1.0	1.6	10
89	1975	60	879	9	78	1.0	1.6	10
99	1790	49	674	8	72	0.9	1.3	9
01	2266	74	1236		107	1.2	2.3	12
01	2023	64	1039	11 9	70	1.0	1.8	10
12	2367	71	92 7	11	84	1.1	1.9	13
15	2341	75	1041	ū	76	1.1	2.0	12
14	2304	70	942	in in	83	1,1	1,8	12
23	2108	63	820	11	78	1,1	1.7	12
28	2330	74	1069	12	88	1.2	2.1	14
25	2315	68	955	12 11	88	1.1	1,8	12
36	2030	62	800	10	75	1.1	1.7	11
42	2698	82	1142	12	79	1.3	2,1	15
37	2226	68	1021	12 10	81	1,1	1.9	12

deviations

deviations

I.,

deviation

Age in yrs.	Xe.	Group ^a	Height cm.	Age in Mos,	Hood energy cal.	Protein ga.	Calcium Mg.	Iron	Ascori acid ng.
12	13	I	141	147	2730	82	1035	13	75
	14	II	162	150	2762	83	1139	13	106
	54	III	151	149	2492	78	1060	12	78
13	5 7	I	141	159	2067	66	1188	9	61
-	7	II	165	162	2334	69	816	10	69
	32	III	153	161	2565	76	1039	12	80
14	4 6	I	151	171	2432	75	1174	12	80
-	6	Iľ	167	175	2626	79	1050	13	74
	27	III	159	172	2464	74	946	12	84
15	5	I	151	184	2297	70	890	12	79
•	56	II	171	184	2449	73	865	11	57
	27	III	161	186	2684	76	909	12	103
16	4	I	152	194	2356	65	663	11	87
	5	II	171	199	2145	72	988	10	94
	5 27	III	160	198	2336	69	800	11	90
17	4	I	155	210	2123	64	834	10	67
•	4	II	170	209	2645	84	1088	11	84
	17	III	163	209	2388	71	786	12	91
18	1	I	154	225	2738	80	734	15	86
	1 3 8	II	172	225	2719	80	861	12	103
	8	III	161	221	2361	71	786	11	9Ō

-134-

•	Hood.			Iron	Ascorbic acid	Thiamine	libo- flavin	Hiacin
.	cal.	.	16 .	ng.	26.	26.	16.	×g,
7	2730	82	1035	13	75	1.3	2.1	14
0	2762	83	1139	13	106	1.3	2.2	15
9	2492	78	1060	12	78	1.2	2.0	14
9	2067	66	1188	9	61	1.0	1.6	11
9 2 1	2334	69	816	10 ·	69	1,1	1.7	24
1	2565	76	1039	12	80	1.2	1.9	13
1	2432	75	1174	12	80	1.2	2.0	12
'5	2626	79	1050	13	74	1.2	2.1	13
2	2464	74	946	12	84	1.2	1.9	13
14	2297	70	890	12	79	1.2	1.6	14
4	2449	73	865	11	57	1.1	1.7	12
16	2684	76	909	12	103	1.3	1.9	14
14	2356	65	663	11	87	1,1	1.4	11
19	2145	72	988	10	94	1.1	1.8	12
8	2336	69	800	11	90	1.2	1.6	12
LO	2123	64	834	10	67	1.0	1.6	11
19	2645	84	1088	11	84	1.2	2.0	12
19	2388	71	786	12	91	1.2	1.6	13
25	2738	80	734 861	15	86	1.5	1.5	17
25	2719	80	861	12	103	1.3	1.8	16
25 21	2361	71	78 6	11	9Ō	1.1	1.5	12

.

Fig. 13 Mean daily food energy value of the diets of lowa children classified according to three groups of height.

-

-135-

the average girls had diets with energy values that approximated the allowances.

The tallest boys had mean daily protein intakes that were nearly always greater than those of the shortest boys. The boys of average height had protein intakes lower than those of the tallest boys. The mean protein content of the diets of the boys of average height and of the tallest boys were always greater than the allowances. The shortest boys had diets which exceeded the allowances except at 13 and 17 years (see Figure 14).

At corresponding ages that tallest girls always had mean daily protein intakes that were greater than the protein intakes of the shortest girls. The girls of average height tended to have intermediate values for their protein intakes.

The tallest girls had mean dietary protein values above the allowances from 6 through 12 years of age. The shortest girls had mean protein intakes that were less than the allowances most of the time. The girls of average height had mean values that were approximately equal to the allowances to 13 years, then the values were slightly below the allowances.

The mean daily protein intake was greater for the tallest children than for the shortest children. The

Fig. 14 Mean daily protein content of the diets of lowa children classified according to three height groups.

4

children with average height tended to have protein intakes that were intermediate to the other two groups.

The mean daily calcium intake of the tallest boys was greater than the intakes of the shortest boys except at 6, 7, 10 and 15 years of age. The boys of average height had somewhat intermediate values for the calcium intakes. The tallest boys had calcium intakes equal to the allowances at many more ages than was noted for the shortest or average boys. The shortest boys had diets with calcium content that were below the allowances except at 6 and 7 years of age, and the boys of average height had diets with values below the allowances except from 6, 7, 8 and 17 years of age (see Figure 15).

The tallest girls had mean intakes of dietary calcium that exceeded those of the shortest girls except from 13 to 15 years of age. From 6 to 12 years of age the girls of average height had calcium intakes that were intermediate to the other two groups. With the girls below the teen ages, the mean calcium intakes varied in the same direction as the mean heights, but thereafter calcium intakes bore no consistent relationship to heights. The mean daily intakes of calcium were less than the allowances from the three height groups of girls except for the tallest 6- and 8-yearold girls and the 8-year-old girls of average height, but

-138-

Fig. 15 Mean calcium content of diets of lowa children classified according to three groups of heights

-139-

ŝ

below the teens the girls had intakes that were less than the allowances.

The tallest boys had iron intakes that were most of the time greater than those of the shortest boys. The boys of average height had values often intermediate to the values of the other two groups. The iron intakes of the three groups of boys either exceeded or were equal to the allowances except for the shortest 13 and 14 year old boys.

The tallest girls usually had mean daily intakes of iron greater than those of the shortest girls, but when the average group is considered it cannot be said that the mean heights varied consistently in the direction of the mean daily iron intakes.

The tallest girls from 6 to 12 years of age, girls of average height from 6 to 10 years of age, and the shortest girls from 6 to 7, 9 th 10 and 18 years of age had diets with iron contents that approximated the allowances, otherwise the intakes of iron were below recommendations.

In general, the tallest boys and girls up to 13 years had mean daily iron intakes that were greater than those of the other two groups. With a few exceptions in the shortest group of boys, the mean iron intake of the three groups of boys were comparable to the allowances. With the exception of the 7- to 11-year-olds, the tallest girls had mean iron

-140-

intakes that were below the allowances. The diets of the tallest boys usually had a higher mean ascorbic acid content than the diets of the shortest boys.

The mean daily ascorbic intake of the tallest boys was greater than the allowances except at 13, 14, 17 and 18 years of age. Regardless of height status boys seemed to have more ascorbic acid than suggested by the allowances. The negative deviations from the allowances were the greatest for the shortest teen-age boys.

The mean ascorbic acid content of the diets of the tallest girls was greater than that noted in the diets of the shortest girls at most ages. The girls of average height had mean dietary intakes of vitamin C that were either intermediate or above the values of the other two groups.

The diets of the three groups of girls from 6 to 12 years of age had mean daily ascorbic acid values in excess of or equal to the allowances. Afterwards only the girls of average height had diets with ascorbic acid contents continuously greater than the allowances.

The calculated mean daily thiamine intake of the tallest boys was nearly always above that of the shortest boys, while that of the boys of average height was usually between the values for the other two groups at corresponding ages. The tallest boys had diets with thiamine content that were greater than the allowances except at 10 years of age. The shortest boys and the boys of average height had dietary intakes of thiamine that varied about the allowances.

The mean daily thiamine content of the diets of the tallest girls was greater than that of the shortest girls to 13 years, but afterwards it was about the same for all three groupings.

The tallest girls had mean thiamine intakes that were above the allowances to 13 years. The shortest girls and the girls with average height had intakes of thiamine that were most of the time below the allowances.

The three groups of boys, classified according to height, had diets with mean riboflavin content that was practically alike to 10 years of age; afterwards it diverged roughly in the same order as the height classification. The three groups had dietary intakes of riboflavin above the allowances except the shortest boys at 13 and 17 years of age.

The mean dietary intake of riboflavin by the girls in the three groups tended to follow the order of the height groupings. The tallest girls and the girls with average height had diets with riboflavin content that were above

-142-

the allowances through 12 years. Afterward the intake values were nearly equal to or below the recommendations. The diets of the shortest girls were nearly always lacking in this vitamin when compared with the allowances.

The niacin content of the diets of the tallest boys was greater than that of the shortest boys most of the time. The boys of average height had dietary niacin values that were often between the values of the other two groups. With few exceptions, the mean daily niacin intakes were greater than the allowances regardless of the height status.

The dietary intakes of niacin by the tallest girls tended to be greater than that of the shortest girls. The girls of average height had intakes often intermediate in value. The niacin intakes for the three groups of girls exceeded or approximated the allowances to 12 years; afterwards the values for the diets of the three groups were below the recommendations with those of the shortest girls deviating the most from the allowances.

The tallest boys tended to have diets with food energy values and nutrient contents that were higher than those noted for the shortest boys throughout the school age. The diets of the boys of average height tended to have mean values for the various nutrients that were intermediate to the mean values for the other two groups, particularly between 6 and 14 years. With the exception of the calcium

-143-

intake, the tallest boys and the boys with average height had intakes of the different nutrients that exceeded or approached the recommended allowances.

From 6 to 13 years of age the tallest girls had larger nutrient intakes than the shortest girls. In this age range the girls with average height had intake values that were intermediate to the values of the other two groups. For the girls below 13 years nutrient intakes of the diet varied in the same direction as the height classification.

Except for calcium, the tallest girls and the girls with average height from 6 through 12 years had mean daily intakes of the various nutrients that approximated the allowances. From 13 to 18 years the girls regardless of height classification had intakes of the different nutrients that were frequently below the allowances.

<u>Concentrations of the various blood constituents</u>. The increases in linear growth depend upon the increases in the length of skeleton as a whole. The cartilaginous cells in the growing ends of the bone are particularly sensitive to the lack of certain components in the blood needed for calcification.

-144-

The serum ascorbic acid concentrations of boys and girls in the three groups tended to decrease with age to low levels between the ages of 13 to 15 years (see Figure 16). The trend was particularly conspicuous in the data for the boys for whom the minimum was reached by 13 years for the tallest, 14 years for the average and 15 for the shortest. The age at which the greatest depression was noted differed with the height classification (see Table 38).

The low values for the shortest boys occurred at the same time that the serum alkaline phosphatase concentrations were at their peak. For the boys of average height the peak in alkaline phosphatase concentration occurred a year before this low ascorbic acid concentrations, and for the tallest boys it was two years before the minimum ascorbic acid concentration was reached.

For the girls the minimum serum ascorbic acid concentrations were reached at 13 years for the tallest girls and those of average height, but not until 16 years for the shortest girls. In case of the girls the serum alkaline phosphatase concentrations were less uniformly related to the serum ascorbic acid minima, although in each instance the peak preceeded the depression of serum ascorbic acid concentration. These concurrent changes in serum alkaline

-145-

Fig.16 Mean serum ascorbic acid concentration of lowa children classified according to three height groups

	Ta	P]	е.	38	
--	----	----	----	----	--

Mean Serum Ascorbic Acid Concentrations of Iowa Children Classified According to Height Groups

Groups ^a		Γ	I	I	I	III		
Age	No	No 04	No.	Ma Q/	No.	Ma OZ		
yr.	No.	Mg.%	NO.	Mg.%	NO .	Mg.º/o		
		1	Boys					
6 7 8 9 10 11 12 13 14 15 16 17 18	4 354 72 916 3312	1.09 0.46 0.65 0.90 0.52 0.78 0.68 0.16 0.74 0.51 0.79 0.76 0.70	7575462332212	0.82 0.92 0.97 1.17 0.94 0.98 0.77 0.45 0.28 0.67 0.68 0.21 0.22	10 16 25 26 21 43 28 90 56	0.91 0.97 0.87 1.08 0.86 0.86 0.71 0.76 0.54 0.46 0.88 0.64 0.48		
		:	Girls					
6 7 8 9 10 11 12 13 14 15 16 17 18	3328301320240	1.08 0.89 0.38 1.14 1.43 0.66 0.68 0.78 1.14 0.30 0.99	3847471402522	0.82 1.04 1.42 0.62 0.81 0.83 0.78 0.58 0.58 0.58 0.64 1.00 0.78 0.98	18 20 18 22 21 39 18 11 13 8 4 5	0.93 1.06 0.98 0.97 0.67 0.74 0.48 0.44 0.56 1.14 1.01		

^aGroup I--Height minus 2 or 3 standard deviations Group II--Height plus 2 or 3 standard deviations Group III--Height within ± 1 standard deviations phosphatase and serum ascorbic acid concentrations may reflect the rapid use of ascorbic acid in the process of bone growth.

The tallest boys to 13 years had serum ascorbic acid concentrations that were most of the time higher than those of the shortest boys. The serum ascorbic acid concentrations for the tallest girls and the shortest girls had values that fluctuated extensively. The boys and girls of average height had values that followed a more even trend from age to age than did the values of the groups at the two extremes of height.

The serum carotenoid concentrations for the three groups of boys and girls decreased with age, so a minimum was reached between 13 to 15 years (see Figure 17). The low concentrations were reached by the shortest boys at 13 years, the boys with average height and tallest boys at 15 years. According to these data the shortest girls did not have concentrations as conspicuously low as had the boys; however, data were lacking at 15 years (see Table 39). The tallest girls and those of average height reached a low level at 13 years of age. These low carotenoid concentrations for the boys and girls appeared in about the same age interim as the low ascorbic acid concentrations.

These low carotenoid and ascorbic acid concentrations occurred at the same time or within two years after the

-148-

Fig.17 Mean serum carotenoid concentration of Iowa children classified according to three height groups

-

Table 39

Mean Serum Carotenoid Concentrations of Iowa Children Classified According to Height Groups

Groupsa		I		II	I	II
Age yr.	No.	Mog.%	No.	Mcg.%	No.	Mcg.%
			Boys			
6 7 8 9 10 11 12 13 14 15 16 17 18	3354720162212	101 106 109 108 118 209 106 50 104 122 154 84 102	7664 562332212	112 145 141 108 144 122 98 100 79 64 82 78 57	116 2332 14 28 9956	103 121 111 100 121 104 107 107 81 64 67 116 108
			Girls			
6 7 9 10 11 12 13 14 15 16 17 18	3327362310240	181 110 76 93 100 112 98 117 88 86 110	3747470402422	117 129 156 125 127 93 102 71 96 114 84 162	18 21 28 21 22 40 12 13 4 5	134 120 113 132 107 98 84 95 99 82 147 126

^aGroup I--Height minus 2 or 3 standard deviations Group II--Height plus 2 or 3 standard deviations Group III--Height within ± 1 standard deviations

<u>.</u>

peak in alkaline phosphatase concentrations. It appeared that not only serum ascorbic acid but also serum carotenoids may be utilized more rapidly by the body in spurts of linear growth than during the periods of slow linear growth.

The tallest and the shortest boys and the boys with average height started to show a decrease toward adult levels in concentrations of serum alkaline phosphatase at 12, 13 and 14 years, respectively. The tallest girls, the girls with average height and the shortest girls reached the peak at 10, 11 and 12 years, respectively (see Figure 18). With both sexes the tallest children attained the peaks of serum alkaline phosphatase before the other two groups (see Table 40). It was at these ages when the peaks were reached that the boys and the girls also made more than usual increment in linear growth.

There were few notable differences in the hemoglobin concentrations in the blood of the three height groups for boys and girls. The tallest boys perhaps tended to have higher values than the shortest boys, as shown by the higher concentrations in 8 out of 13 age groups (see Table 41).

Summary

1. The weights of the tallest boys tended to be the heaviest, and those of the shortest boys the lightest. The

-151-

Fig.18 Mean serum alkaline phosphatase concentrations of Iowa children classified according to three height groups

and the second second

ohate n cl

÷

Groupsa		I	I	I	I	II
Age yr	No.	NP.U.b	No.	NP.U. ^b	No.	NP.U. ^b
		Boy	<u>/8</u>			
6 7 9 10 11 12 13 14 15 16 17 18	4 2 5 4 7 2 0 1 6 3 3 1 2	5.64 3.94 5.55 7.630 5.61 5.59 5.61 5.19 5.65 5.19 5.4 3.4 2.48	7674562432212	4.00 56.41 56.54 5.169 5.46 5.46 5.46 5.46 5.46 5.46 5.46 5.46	11 20 227 216 32 10 32 10 30 56	4.32 5.04 5.132 5.05 5.06 5.24 5.132 5.06 5.24 5.24 5.24 5.24 5.24 5.24 5.24 5.24
		011	<u>cls</u>			
6 7 8 9 10 11 12 13 14 15 16 17 18	4 328 362 320 24 0	5.08 3.56 4.77 4.18 3.70 4.29 5.58 2.98 2.38 1.42	3847471402522	4.75 5.89 4.95 5.37 7.76 4.23 3.2 1.71 1.21 2.00	20 21 28 22 20 41 22 20 41 12 13 8 4 5	4.97 4.84 5.71 5.58 6.37 5.537 5.73 3.13 2.701 1.90 1.35
^a Grour Grour Grour	p II	Height min Height plu Height wit	182 or	3 standar	d devia	tions

Mean Serum Alkaline Phosphatase Concentrations of Iowa Children Classified According to Height Groups

Table 40

^bNitrophenol units.

Table 41

Mean Hemoglobin Concentration in Blood of Iowa Children Classified According to Height Groups

Groups ^a	I	· · · · · · · · · · · · · · · · · · ·]	1]	II
Age	No.	0m 01	No.	am oc	No.	am ala
yr.	NO .	Gm. %	NO.	Gm. %	NO.	Gm.9/0
		Ē	oys			
6 7 8 9 10 11 12 13 14 15 16 17 18	6964 1074 1885534	12.1 11.9 12.6 12.2 12.8 12.4 12.7 12.3 13.0 14.7 14.3 14.4 15.3	10 12 10 78 74 66 5524	12.1 12.7 12.8 13.0 12.3 13.4 13.4 13.6 14.9 14.9 14.4 14.2	205513483722460 10	12.0 12.2 13.0 13.1 13.6 13.2 13.4 13.2 13.4 13.2 14.3 14.3 14.9
		<u>c</u>	irls			
6 7 8 9 10 11 12 13 14 15 16 17 18	7659892545441	12.3 12.1 13.3 12.7 12.7 12.1 13.7 12.2 13.1 13.4 13.4 12.6 14.3	6 10 10 10 7 6 37 6 6 54 3	12.7 13.0 12.8 12.9 12.6 13.2 13.0 13.1 13.0 13.4 12.6	351 2404 42 3277 277 178	12.3 12.2 11.9 12.6 13.5 13.1 12.9 12.7 13.0 13.1 12.4

^aGroup I--Height minus 2 or 3 standard deviations Group II--Height plus 2 or 3 standard deviations Group III--Height within ± 1 standard deviations boys of average height had weights intermediate to the other two groups. The weight of the shortest teen-age girls tended to be heavy for their height.

2. The tallest boys had nutrient intakes that were higher than those of the shortest boys at nearly all ages. The boys of average height tended to have mean intake values at each age that were more often than not intermediate to the values of the other two groups.

3. For the tallest girls below 12 or 13 years of age the mean intakes of dietary nutrients were greater than those of the shortest girls at most ages. After 12 or 13 years, there was no apparent relationship between height status and dietary intake as shown by group means.

4. The tallest boys and the boys of average height tended to have nutrient values that either exceeded or closely approached the suggested values in the allowances, except for calcium. The shortest boys had nutrient intakes that were below the allowances more frequently than was observed for either of the other two groups.

5. To 12 or 13 years the tallest girls and the girls of average height tended to have intakes that approached or exceeded the allowances except for calcium. Afterwards the mean daily intakes by all the girls regardless of height status tended to be less than the allowances.

-155-

6. The serum concentrations of ascorbic acid and carotenoids tended to decrease with age for three height groups of boys and girls so the minima were reached between 13 and 16 years.

7. These lowest concentrations in serum ascorbic acid and carotenoids usually occurred within one or two years after the peak concentration in the serum alkaline phosphatase.

8. The peaks in serum alkaline phosphatase concentrations occurred at 12 years for the tallest, at 13 years for the shortest boys and at 14 years for the boys of average height.

9. The peaks in serum phosphatase concentrations appeared at 10 years for the tallest girls, at 11 years for the girls of average height and at 12 years for the shortest girls.

10. The tallest boys from 8 to 13 years tended to have higher hemoglobin concentrations in the blood than had the other two groups of boys.

Developmental Levels of Iowa Children

Height and weight are measurements of two kinds of growth. According to Krogman (1950) Wetzel has devised a method of using these two measurements along with age to estimate the rate of development, the physique and the rate of growth of a child. This chart is known as the Wetzel Grid.

The Grid has two halves, a right and a left. "On the right side of the graph is a channel system sloping upward from left to right. These channels are crossed at regular intervals of ten units by more or less horizontal 'isodevelopmental level lines' which are, in effect, increment units." Each channel establishes the body build. From the extreme left to the right the channels typify the following physical status and physique, obese, stocky, good, fair, borderline and poor. The channel fulfills two purposes: 1. it describes the child's body build; 2. it shows paths of growth from 6 to 18 years.

This left side of the Grid points out growth in height, in weight, and in development as measured by the levels. Body build is indicated by the channel. Nutritional grade is measured "by the slope of the child's own curve (normal if it parallels a channel, overnutrition if the slope is greater than the channel system, undernutrition if it is less)". Physical status is determined by a combination of the four factors just mentioned.

-157-

Mean developmental level of a total sample of Iowa children

The most effective use of the Grid is obtained through a series of observations on a single child over a period of time. But the Grid may be used to describe a group of children on whom only a single measurement has been made. One height and one weight measurement was made on these Iowa children in the present study; therefore, developmental level and physique or body build only at the time of measurement can be noted. The measurements were plotted on the Grid to obtain an estimate of the developmental level, which may be considered a crude estimate of the surface area.

Wetzel (1941) claimed that a child developing at a normal rate should advance ten developmental levels a year. The boys showed the largest mean increment in developmental levels between the ages of 12 and 13 years, and between the ages of 14 and 15 years; the girls showed the largest increment between the ages of 8 to 9, 9 to 10, and 10 to 11 years (see Table 42). The boys increased nearly twice the amount and the girls one and one-half times the amount estimated by Wetzel. The range in developmental level at each age-sex group was extensive, especially at 12 years for both the girls and the boys.

-158-

Table	42
-------	----

Mean Developmental Levels⁸ of Iowa Children

Age yr.	No.	Mean D.L. ^a	Standard deviation D.L. ^a	Standard error D.L. ^a	Range D.L.	
Boys						
67891011213 1121341516178	38 55 56 50 40 24 18 18	53.1 64.2 78.4 90.2 96.1 107.2 114.9 132.9 139.6 162.6 163.4 166.6	12.7 13.4 16.4 17.1 12.8 19.6 20.1 18.3 20.8 11.6 15.2 16.7 14.7	2.1 2.3 2.3 2.3 2.3 2.3 2.6 2.1 2.3 2.6 2.6 3.5 2.6 5 3.5	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
<u>Girls</u>						
67890 1012345678 1718	50844 66582478762 1202	50.2 63.2 69.9 99.6 1259.2 145.6 1290.2 1490.5 151.6 151.6	15.7 17.8 15.9 20.2 20.8 14.6 23.8 13.8 13.8 13.9 14.6 14.7 8.6	2.645796033495	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	

^aAs obtained from Wetzel Grid.

يە يەتىر تە ھەخە

Study of the children with the lowest developmental level, highest developmental level and average developmental level

In order to segregate the children who had developed more rapidly or less rapidly from those children developing at average rate according to the Grid, each age-sex group was divided into three different groups. Group I was comprised of all the children who had developmental levels within second or third standard deviations below the mean; Group II, of all the children who had developmental levels within second or third standard deviations above the mean; Group II, of all the children who had developmental levels within second or third standard deviations above the mean; Group III, of all the children who had developmental levels within second or third standard deviations above the mean;

In the total population 14 per cent of the boys and 16 per cent of the girls were in the highest developmental level; 12 per cent of the boys and 14 per cent of the girls, in the lowest developmental level; and 74 per cent of the boys and 70 per cent of the girls, in the average developmental level.

In the discussion these three new groups will be referred to as follows: Group I, lowest developmental level; Group II, highest developmental level; and Group III, average developmental level.

「たられる」の時間に見ていたの

10

-160-

<u>Nutrient intake</u>. Recently Spies (1953) reported that children who had symptoms of nutritional failure showed a lag in developmental level. The lag could be overcome to a large degree if a supplement of milk solids equal to one quart of fresh milk was given to each child six days per week for 20 months. Milk solids equal to two quarts per day induced a larger improvement, but a pint a day for a longer period of time, 40 months, resulted in very little improvement. This study by Spies indicated that developmental level does reflect nutritional status and dietary treatment. In Tables 43 and 44 are presented the mean dietary intakes of the children classified according to the three developmental levels.

The boys in the highest developmental level had food energy values that were nearly always greater than those of the boys with the lowest developmental level. The boys in the average developmental levels had diets with caloric values that were intermediate to the other two groups (see Figure 19).

The boys from 6 to 15 years of age of the highest developmental level had diets with mean food energy values that either exceeded or approximated the allowances. The boys of average developmental level had diets with food energy values that followed the allowances closely.

4.

-161-

Table 43

Mean Daily Food Energy and Mutrient Content of Diets of Children Classified According to Three Developmental Lev

Boys

Age in yrs.	No.	Groups	D.L.ª	Age in Mos.	Yood energy cal.	Protein gm.	Calcium	Iron Mg.	Asco Ac E
6	5	I	33.0	76	1923	63	966	9	8
	5 7	II	72.4	80	2419	74	1143	ú	9
	25	III	52.0	78	2196	66	1057	9	7
7	7	I	43.7	88	2041	61	931	9	6
•	7 6	II	76.4	92	2298	72	1044	10	8
	43	III	63.8	89	2168	65	1039	10	7
8	2	I	53.0	100	1750	58	1060	7	7
	2 8	II	100.5	99	2261	70	1034	n	n
	44	III	72.6	99	2295	72	1099	10	7
9	8	I	64.2	111	2307	70	1047	11	7
	8	II	118.0	116	2461	76	1148	11	8
	37	III	91.7	114	2454	74	1090	11	7 8 8
10	7 6	I	76.8	124	2649	81	996	12	8
	6	II	122.5	129	2484	77	1158	12	9
	47	III	95.9	125	2374	72	936	11	9 7
11	5 9 36	I	77.6	136	2642	62	1128	11	8
	9	II	140.0	138	2857	95	1273	13	9 8
	36	III	104.2	137	2551	78	1092	ū	8

Group	Developmental Levels	

8.

- I Minus 2 or 3 standard deviations
- II Plus 2 or 3 standard deviations
- III Within ± 1 standard deviation

Table 43

Daily Food Energy and Matrient Content of Diets of Iowa From Classified According to Three Developmental Level Groups

Boys

kge Lin Kos.	Food energy cal.	Protein gm.	Calcium Mg.	Iron #6•	Ascorbic acid E.	Thiamine S.	Ribo- flavin #6.	Fincin FG.
76	1923	63	966	9	80	0.9	1.7	10
80	2419	74	1143	ú	93	1.2	2.0	12
78	2196	66	1057	9	77	1.1	1.9	11
88	2041	61	931	9	65	0.9	1.7	11
92	2298	72	1044	10	84	1.1	2.0	12
89	2168	65	1039	10	72	1.0	1.8	n
100	1750	58	1060	7	78	0.9	1.8	8
99	2261	70	1034	n	116	1.2	1.9	12
99	2295	72	1099	10	71	1.1	2,1	10
111	2307	70	1047	11	78	1.1	2.0	12
116	2461	76	1148	11	83	1.2	2.0	13
114	2454	74	1090	11	85	1.2	2.1	13
124	2649	81	996	12	81	1.3	1.9	17
129	2484	77	1158	12	92	1.2	2.1	13
125	2374	72	936	11	74	1,1	2.0	13
136	2642	62	1128	11	82	1.2	2.0	12
138	2857	95	1273	13	95	1.4	2.3	16
137	2551	78	1092	n	84	1.2	2.0	13

deviations

deviations

deviation

Age in yrs.	No.	Groups	D.L.ª	Age in mos.	Food energy cal.	Protein gm.	Galcium Mg.	İron "G .	Ascorbic acid S.
-		-					_		
12	13	I	86.7	148	2501	78	893	12	62
	13	11	139.1	151	3034	95	1266	14	104
	64	III	113.6	148	2729	84	1154	13	85
13	6 6	I	106.5	159	2518	75	897	12	77
-	6	II	162.0	162	3024	93	1270	14	75
	32	III	131.5	161	2916	88	1160	14	105
14	4	I	104.2	172	2881	83	926	14	71
	4 6	II	171.6	173	3263	99	1023	16	61
	2 9	III	138.7	174	3080	90	1158	14	100
15	4	I	141.3	183	3282	97	1103	18	105
•	4	II	178.0	185	3256	98	1232	15	113
	24	III	160.0	186	3212	92	1179	15	93
16	3 4	I	133.3	197	3042	85	1160	13	89
	4	II	189.0	196	3030	94	1338	13	111
	24	III	162.1	196	3534	102	1329	16	113
17	2	I	137.0	212	2129	81	1144	10	96
•	2 2	II	197.0	210	2898	90	1046	13	62
	17	III	163.9	209	3607	109	1444	17	107
18	1 4	I	141.0	234	3240	80	891	14	50
		II	188.5	224	3513	101	1410	15	110
	12	III	161.7	221	3431	105	1129	16	81

.

.

Table 43 (continued)

-163-

·

Age in mos.	Food onergy cal.	Protein gn.	Galcium Mg.	Iron mg.	Ascorbic acid Eg.	Thiamine ^m g.	Ribo- flavin mg.	Niacin Mg.
148	2501	78	893	12	62	1.2	1,8	14
151	3034	95	1266	14	104	1.4	2.5	16
148	2729	84	1154	13	85	1.3	2.2	15
159	2518	75	897	12	77	1.1	1.8	13
162	3024	93	1270	14	75	1.4	2.3	15
161	2916	88	1160	14	105	1.4	2.2	16
172	2881	83	926	14	71	1.3	1.7	16
173	3263	99	1023	16	61	1.5	2.3	18
174	3080	90	1158	14	100	1.5	2.3	16
183	3282	97	1103	18	105	1.5	2.3	20
185	3256	98	1232	15	113	1.6	2.8	18
186	3212	92	1179	15	93	1.5	2.5	16
197	3042	85	1160	13	89	1.5	2,1	13
196	3030	94	1338	13	111	1.4	2.5	15
196	3534	102	1329	16	113	1.7	2.5	18
212	2129	81	1144	10	96	1.1	2.0	13
210	2898	90	1046	13	62	1.3	2.1	14
209	3607	109	1444	17	107	1.7	2.8	18
234	3240	80	891	14	50	1.4	1.9	22
224	3513	101	1410	15	110	1.9	2.9	18
221	3431	105	1129	16	81	1.7	2.5	18

•

•

•

. '

Table 44

Nean Daily Food Energy and Matrient Content of Diets of Children Classified According to Three Developmental Lev

Girls

Age in yrs.	No.	Groups ^e	D.L.ª	Age in mos.	food energy cal.	Protein 6 .	Calcium Mg.	Iron ¤g•	Ascor aci ng
	ж.			/	ى بەر ىيە - مەرىپى كالورۇ مالىس		ويزادين والمسيرة كمت مرادتهم والم	<u>مى بەت بىرىزى ئىرى تەركىنى</u>	
6	7	I	26.4	77.8	1705	54	806	8	66
	7 7	II	75.3	78.1	1952	66	1171		86
	36	III	50.0	78.1	2012	61	896	9 9	62
7	5	I	40.6	87.4	1940	54	771	8	83
•	56	ĪI	100.0	91.3	1997	66	1048	10	104
	37	III	61.7	89.3	1992	61	864	9	73
8	7	I	47.6	101.4	1744	53	809	8	61
-	5	ĪI	100.0	102.2	2138	68	1152	10	9
	7 5 31	III	69.1	100.4	2070	64	1030	9	7:
9	9	I	54.7	112.8	2433	73	957	11	81
-	ú	ĪI	117.9	114.4	2299	72	953	11	7(
	42	III	83.1	114.0	2245	68	964	10	8;
10	7	I	69.7	123.0	2140	63	831	10	8:
	11	II	134.2	127.5	2370	72	1009	12	10
	43	III	95.3	125.4	2293	68	939	11	8
11	9	I	87.9	136.1	1898	60	868	9	8,
	14	II	138.2	137.6	2296	70	1046	10	7
	35	III	109.6	137.3	2341	71	1032	10	7 8

Group	Developmental Levels
I	Minus 2 or 3 standard deviations
II	Plus 2 or 3 standard deviations
III	Within ± 1 standard deviation

20ble 44

ly Food Energy and Mutrient Content of Diets of Iowa Classified According to Three Developmental Level Groups

Girls

	Food energy cal.	Protein gn.	Galcium Mg.	Iron ¤g•	Ascorbic acid BG.	Thismine Mg.	Ribo- flavin ng.	Wiacin Mg.
8	1705	54	806	8	66	0.9	1.4	9
1	1952	66	1171	9	86	1.0	2.1	10
,1	2012	61	896	9 9	62	1.0	1.6	10
4	1940	54	771	8	81	0.9	1.6	10
3	1997	66	1048	10	104	1,1	1.8	10
3	1992	61	864 .	9	73	1.0	1.6	10
4	1744	53	809	8	67	0.9	1.5	9
2	2138	68	1152	10	90	1.0	2.2	11
4	2070	64	1030	9	75	1.0	1.8	10
8	2433	73	957	11	81	1.1	1.9	13
4	2299	72	953	11	76	1.1	1.9	12
0	2245	68	964	10	82	1,1	1.8	12
0	2140	63	831	10	82	1.0	1.7	11
5	2370	72	1009	12	100	1.2	2.0	13
4	2293	68	939	11	84	1,1	1.8	12
1	1898	60	868	9 .	85	1.0	1.6	11
6	2296	70	1046	10	76	1,1	1.9	12
3	2341	71	1032	10	80	1,1	1.9	12

.

9.

riations

Lations

lation

Age in yrs.	No.	Groupst	D.L.ª	Age in Mos.	Fool energy cal.	Protein ga.	Calcium Mg.	Iron Mg.	Ascorbi acid mg.
12	14	I	92.3	147.8	2740	83	1096	13	73
	10	II	166.7	148.9	2298	74	1040	ñ	95
	57	III	127.0	148.9	2586	80	1067	12	82
13	6	I	91.1	158.2	2268	71	918	11	70
-	6	II	156.5	160.7	2772	84	1287	12	78
	32	III	131.5	161.1	2453	72	954	11	76
14	6 6	I	120.8	172.8	2492	75	1046	12	66
	6	II ·	160.2	171.3	2394	69	916	12	94
	25	III	140.0	173.1	2507	76	990	12	83
15	5 9	I	128.0	183.2	2 698	84	1040	13	104
	9	II	168.6	185.7	2588	72	787	12	81
	24	III	147.4	186.2	2578	74	912	12	87
16	6	I	132.5	194.3	2651	76	928	12	220
	6	II	175.8	196.8	2118	70	790	10	77
	24	III	148.8	198.1	2276	67	787	11	86
17	4	I	132.7	208.8	2188	66	794	11	74
	5	II	175.8	208.8	2068	63	795	10	82
	5 16	III	149.1	209.1	2536	77	868	12	90
18	2	I	132.0	222.0	2551	84	1068	11	75
	2 1 9	II	159.0	228.0	2665	68	742	11	68
	9	III	149.1	221.8	2446	72	748	12	99

Table 44 (continued)

-165-

199 - 1997 - 1994 - 1994 - 1994 - 1994 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1

m. Oak

Age in Mos.	Fool energy cal.	Protein gn.	Calcium Mg.	Iron E.	Ascorbic acid MG.	Thiamine Mg.	Ribo- flavin E.	Niaciz E.
147.8	2740	83	1096	13	73	1.3	2.1	14
148.9	2298	74	1040	ñ	95	1,1	1.9	13
148.9	2586	80	1067	12	82	1.2	2.0	14
158.2	2268	71	918	11	70	1,1	2.3	12
160.7	2772	84	1287	12	78	1.2	2.3	13
161.1	2453	72	954	11	76	1,1	1.7	13
172.8	2492	75 69	1046	12	66	1,1	1.9	13
171.3	2394	69	915	12	94	1,1	1.9	13
173.1	2507	76	990	12	83	1.2	2.0	13
183.2	2698	84	1040	13	104	1.3	2.0	15
185.7	2588	72	787	12	81	1,1	1.7	14
186.2	2578	74	912	12	87	1,2	1.8	14
194.3	2651	76	928	12	220	1.3	1.9	13
196.8	2118	70	790	10	77	1,1	1.6	12
198.1	22 76	67	787	11	86	1.1	1.6	12
8.805	2188	66	794	11	74	1.1	1.8	11
208.8	2068	63	795	10	82	1.0	1.4	10
209.1	2536	77	868	12	90	1.2	1.7	14
222.0	2551	84	1068	n	75	1.3	2.0	14
228.0	2665	68	742	11	68	-1.1	1.5	14
221.8	2446	72	748	12	9 9	1.2	1.5	14

.

• ·

- ·

•

Fig.19 Mean daily food energy value of the diets of lowa children classified according to three developmental levels

-166-

The caloric values of the diets of the boys in the lowest developmental level were less than the allowances at 7 of 13 age groups.

The girls of the highest developmental level from 6 to 13 years tended to have higher caloric intakes than did the girls in the lowest developmental level. After 13 years, the girls with the lowest developmental level had higher caloric intakes than did the girls in the highest developmental level. The girls with the average developmental level had diets with food energy values that were more or less intermediate to the values of the other two groups.

From 6 to 10 years of age the girls in highest and in the average developmental level had diets with food energy values that were above the allowances. After 10 years the girls in the average group had mean daily caloric intakes that followed the recommendations more closely than did those of the girls with highest developmental level. The girls in the lowest developmental level had intakes that were as often above as below the allowances. Below 12 years there was some evidence that the mean caloric intakes did follow the same classification as the mean developmental level of the girls, but above 12 years there was no consistent relationship between mean food energy values and developmental levels.

-167-

Ξ

From 6 to 12 years the boys and the girls with the highest developmental level had diets with a protein content that was greater than those observed for the lowest developmental level at the same age. The boys of the highest developmental level continued to have greater protein intakes than those of the lowest developmental level, but after 14 years the girls with the highest developmental levels had intakes of protein lower than those of the girls with the lowest developmental level (see Figure 20). For the boys under 15 years and the girls under 12 years the protein intakes tended to follow the direction of the developmental level.

The boys with average developmental levels had mean daily protein intakes which exceeded the allowances. The girls with average developmental level had mean daily intakes which approximated the allowances within plus or minus five grams except at 16 years. At that age the girls with average developmental level had mean daily intakes of about ten grams less than the allowances. The boys, except the 17 year olds, and the girls to 13 years with the highest developmental level had mean protein intakes that were greater than or nearly like the allowances. The boys and the girls with the lowest developmental level had mean dietary intakes of protein that were below, as often as

-168-

trap and the contract of the second part of the second second second second second second second second second

Fig. 20 Mean daily protein content of diets of lowa children classified according to three developmental levels

-169-

above, the allowances. Of the three groups those of the lowest developmental level most often had diets with protein contents in amounts less than the allowances.

1.

The calcium content of the diets of the boys with the highest developmental level was in general greater than the intakes of the boys in the lowest developmental level. The boys with average developmental levels had diets with calcium contents that varied between the calcium values of the other two groups. The boys with highest developmental levels had diets with calcium content greater than the recommendations from 6 to 12 years of age (see Figure 21). In fact boys of the highest developmental level had mean daily calcium intakes which conformed with the allowances to within 100 milligrams except at 14, 15 and 17 years. The boys of the lowest developmental levels had diets with calcium content that were below the allowances throughout the age range except at the 8 year, when the mean daily intake of calcium barely met the allowances. Beyond 11 years of age the deviation from the allowances ranged from 350 to 500 milligrams. The boys above nine years in the average developmental level had diets below the allowances but the deviations were much less than those noted for the boys of the lowest developmental level.

For girls 6 to 12 the mean calcium intake of the children varied in the same direction as the developmental

-170-

Fig. 21 Mean daily calcium content of diets of lowa children classified according to three developmental levels

level. The girls with the highest developmental levels from 6 to 14 years tended to have the largest mean daily intakes of calcium; the girls with the lowest developmental levels, the smallest calcium intakes; and the girls with average developmental level, intakes that were intermediate to those of the other two groups. From 14 to 18 years, there was no consistent relationship between developmental level and calcium intakes. In the "teen-ages" the girls with the highest developmental levels tended to have the lowest calcium intakes and girls with the lowest developmental level the largest mean daily intake of calcium. The dietary intakes of calcium for the three groups of girls were less than the allowances except for the 6-, 7-, 8-, 13- and 18-year-old girls in the highest developmental level.

From 6 to 14 years the boys of the highest developmental level had diets richer in iron than those of the lowest developmental level. The iron content of the diets of the boys in the three groups roughly followed the classification of the developmental levels. The iron intakes of the boys of the highest and of average developmental levels were about equivalent to the allowances, whereas in 8 of the 13 age groups the iron intakes of the boys of the lowest developmental levels were considerably less than the allowances.

-172-

From 6 through 13 years the girls of highest developmental level tended to have daily intakes of iron which exceeded those of the lowest developmental level. In this age range the girls of average developmental level had iron intakes almost identical with the allowances. In the teens there was no apparent relationship between developmental levels and mean daily iron intakes. Throughout the age range girls of lowest developmental level deviated most from the allowances with respect to iron intakes.

The boys from 6 to 12 years with the highest developmental level had a larger calculated mean ascorbic acid content in their diets than was noted for the other two groups. The boys in the average developmental level group had mean daily ascorbic acid intakes that were intermediate between the values of the other two groups (see Figure 22).

The boys with average developmental levels had ascorbic acid intakes that were greater than the allowances at all ages except at 18 years.

The boys in the highest developmental level failed to meet the allowances at 13, 14 and 17 years, whereas the boys in the lowest developmental level failed at 12, 13, 14, 16, 17, and 18 years.

From 6 to 12 years of age the girls with the highest developmental level tended to have ascorbic acid intakes that

-173-

Fig. 22 Mean daily ascorbic acid content of diets of lowa children classified according to three developmental levels

the same of the second

-174-

were greater than those of the other two groups. With few exceptions the girls in the three groups had intakes greater than the allowances.

The boys in the three developmental groups had mean daily thiamine intakes that followed closely the classification of the developmental levels from 6 to 16 years. The boys of the average and highest developmental level had diets that approximated the allowances. The boys with the lowest developmental level had diets with thiamine content less than allowances most of the time (see Figure 23).

The girls with the highest developmental level tended to have higher dietary thiamine intakes than did the girls in the lowest level from 6 to 11 years. After 12 years thiamine values of the diets of the girls in the highest developmental level tended to be lower than the thiamine values of the other two groups. From 6 to 12 years the girls with highest and the average developmental levels had mean daily intakes of thiamine that were equal to or greater than the allowances, afterwards the girls of all developmental levels tended to have less thiamine than recommended. The thiamine content of the diets of the girls with the lowest developmental level was below the allowances most of the time.

-175-

·····

Fig.23 Mean thiamine content of diets of lowa children classified according to three groups of developmental level

The boys with the highest developmental level had diets with riboflavin content that was greater than that of the boys with the lowest levels. From 6 to 16 years the boys of average developmental level had mean daily intakes of riboflavin that were usually intermediate between the intakes of two groups. The diets of the boys with the highest and the average developmental levels had riboflavin intakes that almost always surpassed the allowances. From 6 to 11 years of age the boys with the lowest developmental level had intakes above the allowances, but afterward this group of boys tended to have less riboflavin than the allowances (see Figure 24).

The girls with the highest developmental level tended to have higher intakes of dietary riboflavin than the girls with the lowest level to 14 years, then the trend was reversed. The riboflavin intakes of all three groups approximated the allowances. The divergence was greatest for the teen-age girls of the highest and average developmental level who tended to have less riboflavin than the allowances.

The boys in the three groups had dietary niacin intakes that tended to parallel the developmental status at 6, 7, 8, 11 and 12 years. The mean daily niacin intakes of these boys were above the allowances most of the time.

-177-

Fig. 24 Mean riboflavin content of diets of lowa children classified according to three groups of developmental level

-178-

At a few ages the boys of the lowest developmental level had mean daily niacin intakes that were inclined to be below the allowances more often than had for the other two groups.

The values for the dietary niacin intake for the three groups of girls fluctuated extensively. The mean daily niacin intakes of the girls of the highest or average developmental level exceeded or were equal to the allowances, but the girls with the lowest developmental levels had mean daily intakes of niacin which were below the allowances at a number of ages.

The nutrient intakes either exceeded or equalled the allowances more frequently for the girls and boys of the highest and average developmental level than for the boys and girls of the lowest developmental level. The ages of the children in the highest and average developmental levels at which the intakes most frequently failed to meet the allowances were in the teens.

<u>Concentration of the various blood constituents</u>. At the highest developmental levels the serum ascorbic acid concentration of boys decreased from 1.0 milligram per cent at six years to 0.5 at 14 years; at the average developmental level the concentration decreased from 0.8 to 0.5 milligram per cent at 15 years; and at the lowest

-179-

developmental level the concentration decreased from 1.1 to 0.3 milligram at 13 years (see Figure 25). The low concentrations reached at each developmental level cannot be accounted for by the calculated mean ascorbic acid intakes which were 61 milligrams, 93 milligrams and 77 milligrams for the three groups at 14, 15 and 18 years, respectively. According to Young and her co-workers (1950) these intakes may be 25 per cent higher than the actual intake due to cooking and storage losses. Even with this correction the intakes do not explain fully the low concentrations, especially for the boys of average and of lowest developmental levels (see Table 45).

At most ages in all three groups the calculated mean intake of ascorbic acid approximated the allowances, yet the boys had low serum ascorbic acid concentrations. From these data it appeared that the ascorbic acid intakes nearly equal to the allowances did not supply the needs of boys through the stress of growth. Storvick and her associates (1950) in a comprehensive study noted that intakes of ascorbic acid equal to the allowances did not produce tissue saturation in growing children.

The girls with the highest and with the average developmental levels had serum ascorbic acid concentrations that ranged from nearly 1.0 milligram at 6 years to 0.4 and 0.5 milligram per cent, respectively, at 13 years. The calculated

1

-180-

Fig. 25 Mean serum ascorbic acid concentration of lowa children classified according to three developmental levels

and a second
124

Table 45

Mean Serum Ascorbic Acid Concentrations of Iowa Children Classified According to Developmental Levels^b

Groupsa	1	[]	.I.]	II
Age yr.	No.	Mg.%	No.	Mg.%	No.	Mg.%
			Boys			
6 7 9 10 11 12 13 14 15 16 17 18	3726378231201	1.08 0.46 0.69 1.02 0.56 0.90 0.54 0.29 0.63 0.40 0.60	5366361521321	0.91 1.07 1.10 0.98 1.08 0.81 0.81 0.38 0.30 0.52 0.73 0.36 0.13	130 2936 1550 120 58	0.85 0.82 1.11 0.79 0.91 0.72 0.83 0.58 0.50 0.59 0.54
			<u>Girls</u>			
6 7 8 9 10 11 12 13 14 15 16 17 18	3449231214232	1.08 1.44 0.87 0.93 1.23 0.79 0.62 0.68 0.58 0.58 0.58 0.44 1.00 0.74 0.80	4454402203420	1.05 0.99 0.91 0.56 0.93 0.81 0.74 0.42 0.42 0.42 0.47 0.73 1.20	17 23 12 23 12 24 21 28 95 5	0.90 0.99 1.02 1.02 0.99 0.64 0.77 0.48 0.58 0.48 0.58 1.09 1.09
^a Grou I II III		Minus 2 of Plus 2 of	r 3 sta 3 stan	.s from We Indard dev Idard devi Id deviati	iations ations	rid

^bDevelopmental levels from Wetzel's Grid.

mean ascorbic acid contents of the diets of these girls were equal to the allowances. The girls with the lowest developmental levels had concentrations of serum ascorbic acid that decreased from nearly 1.1 milligram per cent at 6 years to 0.4 milligram per cent at 14 years. The mean calculated ascorbic acid intakes for the girls in the highest developmental level was 78 milligrams; for the girls in the average group, 75 milligrams; and for the girls in the lowest group, 66 milligrams. As with the boys again mean intakes equal to the allowances did not provide growing girls with amounts of vitamin C adequate to maintain a high serum concentration at all ages.

The serum concentrations of ascorbic acid at 13 and 14 years were lower than can be accounted for on the basis of food intake. These results suggest that regardless of developmental level classification, the serum ascorbic acid concentration is reduced under the stress of growth or body changes at puberty.

The boys and girls in the highest developmental level had mean serum carotenoid concentrations that decreased markedly from 6 to 15 and 13 years, respectively (see Figure 26). Boys had a mean carotenoid concentration of 117 micrograms per 100 milliliters of serum at 6 years, of 44 micrograms at 15 years. The girls at six years had a mean concentration of 184 micrograms, and at 13 years mean concentrations of 46 micrograms.

-183-

Fig. 26 Mean serum carotenoid concentration of lowa children classified according to three developmental levels

-184-

The boys and girls in the other two developmental level groups had mean serum carotenoid concentrations that decreased from 6 years to the interim of 12 to 15 years (see Table 46). The decrease was not as dramatic for these groups of boys and girls as it was for the children in the highest developmental level. The especially low concentrations in all groups of boys and girls cannot be explained by the intakes of these children, for the mean daily vitamin A value of their diets either exceeded or approximated the allowances at each age.

Since the disappearance of carotenes in the blood may be associated with the conversion to vitamin A, the precipitous decrease noted in the serum carotenoid concentrations of the children in the highest developmental level, and to a lesser degree in the concentrations of the children of the average developmental level, may suggest a greater use of vitamin A by more rapidly developing children than by the slowly developing children.

Before the boys of the highest and the lowest developmental levels reached the peak in their mean serum alkaline phosphatase concentrations, the values fluctuated greatly (see Figure 27). The boys in the average developmental level had less fluctuation from year to year than had the other two groups. The boys in the average and the lowest

-185-

No. 10

 In party to get important on a strange as in the state of the strange of the strang

Table 46

Mean Serum Car						
Classified	According	to	Developme	ente	l Iev	vels ^D

Groups ^a	I			I	3	[]]
Age yr	No.	Mcg.%	No.	Mcg.%	No.	Mcg.%
			Boys			
6 7 8 9 10 11 12 13 14 15 16 17 18	4425329231111	98 130 92 108 74 118 118 58 92 86 218 81	บงบดพอองกางกา	117 156 133 127 176 201 103 91 46 44 62 116 33	12 18 27 28 18 19 12 11 958	104 118 115 105 124 117 104 112 95 74 74 102 106
		!	<u>Girls</u>			
6 7 8 9 10 11 12 13 14 15 16 17 18	3448232214232	181 91 87 97 116 135 90 105 103 115 108 127	44554062 1 342 1	184 134 110 128 122 82 72 46 81 99 119 	17 15 25 22 4 1 8 8 5 5	120 126 128 115 130 112 128 88 95 103 83 175 176
^a Grouj I II III		elopmenta Minus 2 o: Plus 2 or	r 3 sta 3 stan	s from Wet Indard devis Idard devis Iard devis	ations tions	

^bDevelopmental levels from Wetzel's Grid.

Fig. 27 Mean serum alkaline phosphatase concentration of lowa children classified according to three developmental levels

din a since

-187-

developmental levels had mean serum concentrations that reached the peak at 13 years of age, as compared with 12 years for the boys with the highest developmental level (see Table 47).

The serum alkaline phosphatase concentrations of the girls followed the same classification as the developmental levels to 10 years. The age at which the peak was reached varied with developmental level. The girls of the highest developmental level had mean serum concentrations that attained the peak value at 10 years and the girls of the lowest developmental level had mean concentrations that attained the peak value at 12 years. The girls of average developmental level did not have concentrations that reached a sharp definite peak but the highest mean value appeared at 11 years.

In both sexes the children with the highest developmental level reached maturity at an earlier age than the other two groups of children, as shown by the serum alkaline phosphatase concentration.

The boys in lowest developmental level had hemoglobin concentrations that tended to be lower than did those of the boys in the highest developmental level (see Table 48).

From 6 to 12 years the girls of average developmental level tended to have mean hemoglobin concentrations below

-188-

Tab	le	47
-----	----	----

Mean Serum Alkaline Phosphatase Concentrations of Iowa Children Classified According to Developmental Level^D

Groups ^a		I	I	I	II	I
Age yr.	No.	NP.U.C	No.	NP.U.	No.	NP.U.
		Bo	78			
6 7 8 9 10 11 12 13 14 15 16 17 18	4 326 3392 312 1	3.90 5.02 4.64 6.65 3.73 6.03 5.89 7.47 6.15 3.78 3.53 1.96	5766761521321	4.38 6.50 5.53 6.994 6.697 4.16 3.88 1.898 3.81 3.81 2.19	13 29 29 17 59 12 10 58	4.66 5.08 5.21 5.07 5.09 5.26 5.29 5.20 5.20 5.20 5.20 5.20 5.20 5.20 5.20
		01:	<u>rls</u>			
6 7 9 10 11 12 13 14 15 16 17 18	4449232214232	5.08 3.03 4.94 4.18 2.95 4.77 5.30 4.98 2.10 3.42 2.05 1.56 1.47	44 5154 97 NO M4 NO	5.09 6.05 5.70 5.81 6.81 4.12 2.53 1.82 1.94 1.15	194 125 231 232 2451 238 955	4.97 5.69 5.69 5.58 5.41 3.56 1.56 1.76

Group	Developmental levels from Wetzel's Grid
I	Minus 2 or 3 standard deviations
II	Plus 2 or 3 standard deviations
III	Within ± 1 standard deviation

and Bolo

^bDevelopmental level from Wetzel's Grid.

^CNitrophenol units.

Mean Hemoglobin Concentrations of Iowa Children Classified According to Developmental Levels^b

Groups ^a	I		I	I	I	II
Age yr.	No.	Gm.%	No.	Gm.%	No.	Gm.%
			Boys			
6 7 8 9 10 11 12 13 14 15 16 17 18	5727753644321	11.7 12.0 12.7 12.4 13.0 12.6 13.1 13.8 14.1 13.8 14.1 13.8	6588683664424	11.8 13.1 12.4 13.3 12.3 13.1 13.5 13.0 13.7 15.0 14.2 14.9 14.8	254 41 378 360 314 277 13	12.2 13.0 13.0 13.5 13.5 13.5 13.3 14.4 14.2 14.9
			Girls			
6 7 8 9 10 11 12 13 14 15 16 17 18	7569793665642	12.4 12.4 11.8 12.6 12.7 12.56 12.5 12.5 12.5 12.5 12.5 12.4 12.1	7650039651	12.6 12.4 12.7 12.9 13.3 13.1 12.6 13.1 13.1 12.5 12.5	346 3270 256 255 254 26 9	12.3 12.1 12.6 12.5 12.9 13.5 13.1 13.2 13.2 13.2 13.2 12.7
^a Grou I II III		elopmenta Minus 2 o Plus 2 or	r 3 sta 3 stan	from Wetz ndard devi dard devia andard dev	el's Gr ations tions	id

^bDevelopmental levels from Wetzel's Grid.

-190-

.

and the second
Sec. 1

those of the girls of the highest developmental level, and comparable with those of the girls with the lowest developmental level. After 12 years the hemoglobin concentrations of the girls with average developmental level tended to be the highest. The decrease of the mean concentrations of the girls with highest developmental levels may be a reflection of the poor intakes in calories, iron and protein.

<u>Comparison of the three groups of boys and girls by means</u> of the regression

The main objective in this phase of the study was to quantify the differences among the groups of boys and girls classified according to the developmental level. The data were classified into three groups, each of which was a composite of the children irrespective of age; that is, all boys in the lowest developmental level for each age from 6 to 18 years made up Group I in this section of the study. All boys of the highest developmental level formed Group II, and those of the average developmental level, Group III. Regression coefficients were calculated for developmental level (y) on mean daily intake of some of the nutrients and mean concentrations of blood constituent for each of the three groups in both sexes. Results are shown in Tables 49 and 50.

-191a-

Fig. 28 Mean hemoglobin concentration in blood of Iowa children classified according to three developmental levels

Regression of Developmental Levels on Dietary Component of the Diets of Three Groups of Leva Children

	Group I (Jewest developmental level)	I Pental	(Ievel)	Group II (Eighest developmental level)	II opental	(level)
Distary components	Bagrens ion coaffi ai ant	X N N N N	Keen Inteke	Begress ion coefficient	Kenn U.L.	Keen Liiteko
				Boys		
	No. =	67		No. =	83	
Calories Protein	0.031 ± 0.006	83.3	2485 onl.	0.027 ± 0.005	137.3	2786 on 86 an
Calotum	0.001 ± 0.013		833 MG	+ +		1185
Accordic acid Thiamine Biboflavin	0.174 ± 0.311 49.167 ± 3.432 27.355 ± 5.452					
Racin	3.282 ± 0.775		13 mg.	+1		15 mg.
				Girle		
	Ko. =	87		жо• =	26	
Calories Protein	0.028 ± 0.006 ⁸ 0.770 ± 0.182 ⁸	83.7	2276 cal.	0.013 ± 0.006 ^b 0.850 ± 0.15 ^b	139.2	2297 o 76 6 °.
UBLOLUE Iron Ascorbic sold	+1+1+		920 1 2 .	+1+1+		7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
·	59.312 ±10.811 16.695 ± 7.031 3.708 ± 1.045		1.1 B HG.	11.649 ±14.271 -6.572 ± 4.971 2.799 ± 0.975		

^aSignificant at 15 level

^bBignificant at 5% level

;

ression of Developmental Levels on Distary Components of the Dists of Three Groups of Leva Children

		Group II	II		Group III	- 111	
[ata	ental level)	(Highest developmental lavel)	epseutal.	(Ievel)	(Average develo	develepmental level)	level)
1 1 1	Keen Listaite	Regression coefficient	XeeX U.L.	Keen Inteko	Berression coefficient	Maan D.L.	Kean Intaire
		Boys					
2		жо. =	83		¥0. #	164	
8 3•3	2885 893 895 895 895 895 895 895 895 895 895 895	0.027 ± 0.003 0.764 ± 0.158 0.178 ± 0.158 5.531 ± 1.056 0.021 ± 0.099 47.589 ±10.832 16.790 ± 5.330 3.850 ± 0.853	137.3	222 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	eel. 0.035 ± 0.002 10 	8.1	2683
		01r10		·			
2		Xo. =	26		₩o• =	114	
83.7	22 23 25 25 25 25 25 25 25 25 25 25 25 25 25	0.013 ± 0.006 0.850 ± 0.154 -0.018 ± 0.008 2.575 ± 3.053 0.013 ± 0.103 11.649 ±14.271 -6.572 ± 4.971 2.799 ± 0.975	139.2		0.030 ± 0.004 0.745 ± 0.107 0.002 ± 0.006 6.141 ± 0.663 0.168 ± 0.035 40.187 ± 6.253 4.615 ± 0.611	105.7	2318 0ml. 951 mc. 111 mc. 11.1 mc. 12 mc. 12 mc.

Regression of Developmental Levels on Concentrations of Bleed Constituents of Three Groups of Lova Childr

	Group (Lowest develo		levol)	Group II (Highest developmental le			
Blood constituents	Regression coefficient			Regression coefficient		Neau Ş	
				Joys			
	¥0. =	1 37		X o	: 54		
Ascorbic acid	-20.885 ± 16.089	78.7	0.68 mg.	Xe. = -28.945 ± 9.086	136.3	0.81	
	Ne. =	37		No. =	52		
Carotenoide	0.015 ± 0.125	75.3	106.3 ×06.	¥0. = 0.096 ± 0.096	136.9	110.7	
	¥0. =	39		No. =	54		
Alk. phosphatase	-0.347 ± 2.497	77.5	5.34 KPU			5.31	
	Ko. =	66		N o. =	80		
Hemoglobin			12.8 ga.	12.901 ± 2.575		13.3	
				Girle			
	We -	50		No. =	· ho		
Assorbic acid	-21.548 ± 9.108	81.6	0.84 mg.	-6.708 ± 11.230	136.6	0.81	
	No. =	ha		No. =	· 40		
Carotenoids			105 mog.	-0.422 ± 0.085		105 1	
	No. =	52		¥e. =	39		
Alk. phosphatase	-6.812 ± 2.562	80.7	4.06 NPU	-5.370 ± 1.638	135.8	5.00	
	No	85		No. s	93		
Hemoglobin			12.7 🛤.	2.116 ± 7.861	139	12.8	

"Bignificant at 1% level

^bSignificant at 5% level

ssion of Developmental Levels on Concentrations ood Constituents of Three Groups of Iowa Children

entel	level)	Group (Eishest devel	II	level)	Group (Average devel	III ormental	level)
Nean		Regression coefficient	-			Nean	Kean
		Boys					
)7		Xe. =	< <u>5</u>		¥0. =	238	
78.7	0.68 mg.	-28.945 ± 9.086	136.3	0.81 mg.	¥0.= -14.632 ± 4.977*	102.0	0.78 mg.
7		No. =	52		¥0.=	231	
75.3	106.3 mog.			110.7 mo	0.084 ± 0.010		106.0 mo
9		X o. =	54		¥0.=	234	
77.5	5.34 IPU	-2.702 ± 2.429	136.2	5.31 NPU	0.003 ± 0.059	105.1	5.33 NPU
6		No. =	80		Xo. =	431	
83.5	12.8 ga .	12.901 ± 2.575	138.8	13.3 🚛.	14.931 ± 1.541	105.0	13.2 🦛.
		Øirle					
; 0		Xo, =	49		¥0.=	226	
	0.84 mg.	-6.708 ± 11.230	136.6	0.81 mg.	-13.063 ± 1.091	104.3	0.81 mg.
9		¥o. =	49		¥o. =	228	
81.4	105 mag.	-0.422 ± 0.085	135.0	105 mcg.	-0.152 ± 0.050	104.8	112 mog.
		¥ç. =	39		No. =	223	
80.7	4.06 MPU	-5.370 ± 1.638	135.8	5.00 HPU	-3.280± 0.917*	104.3	4.81 MPU
5		¥0. =	93		No	400	
84.0	12.7 gm.	2.116 ± 7.861	139	12.8 gm.	No. - 7.548 ± 1.363 [®]	106.0	12.8 6.

ولنتقد ساداد

• Application of the second s second se second s

These facts about the regressions may help the reader to interpret the data presented in the tables. If the regression coefficient is significant, it represents the amount of change in developmental level with each unit change in food energy or dietary nutrients, or each unit change in the concentration of the blood constituents. If the regression coefficient is negative and significant, it denotes a decrease in developmental level with each unit increase in food energy or dietary nutrients, or concentration of blood constituents. When positive and significant, the regression coefficient shows that the developmental level increased with each unit of food energy or other nutrients, or with each unit of increase in concentration of blood constituents. If it is not significant, the mean intake or concentration of the blood constituent of the group at the mean developmental level of the total group is representative of the whole group regardless of developmental level. For example, in Table 49, the coefficient of the regression of developmental level on calcium was not significant for the boys in Group I (lowest developmental level); therefore the mean intake of the group, 833 milligrams at the mean developmental level (83.3) of the group may be considered representative of the intakes for all the boys in Group I.

-194-

Nutrient intake. For the boys of average developmental level (Group III) the developmental level increased with each unit increase in food energy and in the nutrients of the diet. Except for calcium and ascorbic acid, the boys of highest developmental level displayed the same significant relationships. The mean calcium and ascorbic acid content of the diets of the boys in Group II at the mean developmental level of the group was greater than the corresponding means for the boys of average developmental level (Group III) (see Table 49). The boys of lowest developmental level (Group I) had no significant increase in developmental level per unit of intake of ascorbic acid or calcium. The mean intake at the mean developmental level was lower than the corresponding intakes for the average group. Except for these two nutrients the relationships of developmental level to intakes were significant in each of the three classifications according to developmental level (Groups I, II, III). At the mean developmental levels for each group, the mean daily food energy value and nutrient intakes of boys, varied in the same direction as developmental level classification.

For the girls of lowest developmental level (Group I) and for those of average developmental level (Group III), the developmental level increased with each unit increase in food energy and in other nutrients of the diet except calcium. The mean calcium intake at the mean developmental level for both groups was practically the same.

Of all the groups studied the girls with the highest developmental level had the fewest significant relationships between developmental level and nutrient intake. The only highly significant developmental level-nutrient relationship within this group was with niacin. The caloric intake was positively related at the 5 per cent level. The calcium intake of the girls in the highest developmental level was also significant at the 5 per cent level, but in a negative direction. In other words, the developmental level of the girls of the highest developmental level was inversely related to the calcium intakes.

For the girls of the highest developmental level, the developmental level was not significantly related to nutrient intake. The mean nutrient intakes for the group were either the same or slightly larger than the means for the girls of the lowest developmental level. Girls of the highest developmental levels had apparently larger mean daily intakes of protein, ascorbic acid and riboflavin

-196-

than did the girls in the lowest developmental level at the mean developmental level of each of the two groups; but they had exactly the same mean daily intakes of iron and thiamine.

<u>Concentrations of various blood constituents</u>. The developmental level of the boys in Groups II and III decreased significantly with each milligram per cent increase of serum ascorbic acid. In other words, the boys in Groups II and III who had the greatest developmental levels had less serum ascorbic acid than the boys who had the smallest developmental level in each group (see Table 50). The boys in Group I had a mean concentration of 0.68 milligram per cent at the mean developmental level (78.7).

The developmental level of the girls in Groups I and III decreased significantly with each unit increase of serum ascorbic acid concentration. So, the girls in Groups I and III who had the greatest developmental levels had less serum ascorbic acid than the girls who had the least developmental level in each group. The girls in Group II did not exhibit a significant relationship between developmental level and serum ascorbic acid concentration. The mean concentrations of serum ascorbic acid for all three groups at the mean developmental level were about the same; namely, 0.84, 0.81 and 0.81 milligram per cent at developmental levels of 81.6, 104.3 and 136.6, respectively.

-197-

The developmental level of the girls and boys in Groups II and II decreased significantly with each increase in serum concentration of carotenoids. The developmental level of the girls and boys in Group I was not significantly related to serum carotenoid concentration. The mean serum carotenoid concentration for the boys was 106.3 micrograms per cent and for the girls 105.0 micrograms per cent at the mean developmental levels of 75.3 and 81.4, respectively.

For boys and girls of average developmental level, there was a significant increase in developmental level with increases in concentration of hemoglobin. The same relationship was observed for boys of highest and lowest developmental level. However, the girls of the highest and lowest developmental levels showed no increase in developmental level with increases of hemoglobin concentrations in the blood. The mean hemoglobin concentrations for each group of girls was practically the same. For Group I, it was 12.7 grams per cent at the mean developmental level, 84.0, and 12.8 grams per cent at the mean developmental level of 106 for Group II.

Since developmental level increases with age, the two factors are involved in the relationships just described. Therefore, it was decided to examine the relationship

-198-

between developmental level and protein intake in each agesex group.

In Table 51 are presented the regression coefficient, the standard error of the coefficient and the means of the developmental level and the means of the protein intake for each age and sex group.

The age factor had been removed somewhat from this analysis since the regressions were computed separately for each yearly age group in which the children were not divided according to developmental level but were considered as a total group. The relationship between developmental level and the protein intake within each age was not so significant as it was when considered separately for the three developmental level groups over the entire age range. The 7-, 8-, 11-, 13- and 14-year-old boys, and the 8- and 10year-old girls showed a significant increase in developmental level with each gram of protein ingested. Another noteworthy observation was that the girls at 7, 9, 12, 14, 15, 16 and 18 years displayed a decrease in developmental level with increased intake of protein. This technique of handling nutritional data needs further consideration. It may be worthwhile to examine the

-199-

Production and the second s

سيسادر وتعريب المنتج أهرام المتح

Table 51

Age	No.	Regression coefficient	Mean D.L.	Mean protein intake gms.
		Boys		
6 7 9 10 11 13 14 15 16 17 18	376 553 500 500 4 392 310 27	$\begin{array}{c} 0.18 \pm 0.18 \\ 0.39 \pm 0.15^{\text{b}} \\ 0.74 \pm 0.23^{\text{a}} \\ 0.15 \pm 0.14 \\ 0.04 \pm 0.14 \\ 0.48 \pm 0.16^{\text{a}} \\ 0.20 \pm 0.29 \\ 0.54 \pm 0.13^{\text{a}} \\ 0.11 \pm 0.04^{\text{a}} \\ 0.04 \pm 0.12 \\ 0.07 \pm 0.12 \\ 0.07 \pm 0.12 \\ 0.07 \pm 0.22 \\ 0.10 \pm 0.18 \end{array}$	53 64 77 91 96 107 115 132 140 160 163 164 167	67 65 70 74 74 79 85 86 89 93 99 105 102
		<u>Girls</u>		
6 7 9 10 11 12 13 14 15 16 17 18	508 432 618 44 786 581 43 336 52 12	$\begin{array}{c} 0.21 \pm 0.68 \\ -0.16 \pm 0.22 \\ 0.50 \pm 0.20^{b} \\ -0.33 \pm 0.27 \\ 0.52 \pm 0.20^{b} \\ 0.20 \pm 0.14 \\ -0.21 \pm 0.15 \\ 0.29 \pm 0.15 \\ -0.02 \pm 0.07 \\ -0.25 \pm 0.52 \\ -0.16 \pm 0.18 \\ 0.03 \pm 0.14 \\ -0.37 \pm 0.18 \end{array}$	50 69 95 9136 126 152 152 147	60 61 64 70 68 69 80 74 75 75 70 72 74

Regression of Developmental Levels on Protein Content of the Diets of Iowa Children

^aSignificant at 1 per cent level.

^bSignificant at 5 per cent level.

relationship between developmental level and protein intake when the protein intake is computed per unit of developmental level for each individual.

This analysis showed that throughout the range of school age, the children with average developmental level, had highly significant relationships between developmental level and nutrient intake, except for calcium. At a given age, however, as shown by the computed regressions of developmental level on protein intake, the relationship was close only at specified ages. Differences in developmental level at a single age were small as compared with those throughout the age range.

Summary

1. At most ages boys of the highest developmental level had dietary intakes of food energy and of nutrients that were greater than the intakes of boys of the lowest developmental level.

2. From 6 to 13 years boys of average developmental level tended to have diets with mean intakes intermediate to those of the other two groups. After 13 years the trend was irregular.

-201-

3. Except for calcium the boys of the highest and those of average developmental levels tended to have diets with nutrient intakes equal to or in excess of the allowances. The calcium content of the diets of boys of teenages deviated most often from the allowances.

4. The boys of the lowest developmental level had diets in which nutrient values were less than the allowances at more ages than boys at the other developmental levels.

5. From 6 to 11 years the girls of the highest developmental level tended to have dietary intakes of the various nutrients that were greater than those of the girls of lowest developmental level. Contrary to expectation after 11 years the girls of lowest developmental level tended to have nutrient intakes greater than those of the girls in the highest developmental level.

6. The girls of average developmental levels had diets with food energy values and nutrient content that were intermediate to the other two groups from 6 to 9 years; afterwards, there was no consistent relationship between developmental level and dietary intakes.

7. In general the girls in the highest and average developmental levels from 6 to 10 or 12 years had diets with food energy values and nutrient content, except calcium,

that exceeded or approached the allowances. Afterwards the girls had dietary intakes of these nutrients that were often below the allowances.

8. The serum ascorbic acid concentrations of the girls and boys in all developmental level groups decreased with age from 1.0 to 0.8 milligram per cent at 6 years to 0.3 to 0.5 milligram per cent at 13 to 15 years.

9. The serum carotenoid concentrations of the boys and girls with the highest developmental level showed the most drastic reduction in the concentration of the serum carotenoids between the ages of 11 and 15 years for the boys and between 9 and 10 years for the girls. The girls and boys in the other groups did not have as marked a reduction in the serum concentrations of carotenoids.

10. The peak, or the maximum level of the serum alkaline phosphatase concentration, came a year earlier for the girls and boys in the highest developmental level than for those in the lowest and average developmental levels.

11. The boys and girls in the lowest developmental levels tended to have lower hemoglobin concentrations than those of highest or average levels.

12. The developmental level of the boys of average developmental level increased significantly with each unit of food energy and of other nutrients of the diet. The

-203-

developmental level of the boys in groups of highest and lowest developmental levels increased significantly with increases in calorie intake and the intake of dietary nutrients, except calcium and ascorbic acid. The boys in the highest developmental level had higher mean intakes in these two nutrients than the boys in the lowest developmental level.

13. For the girls of the lowest developmental level and in average developmental level the developmental level increased with increase in nutrient intake, except calcium. The mean calcium intake for the girls in both groups was alike. The girls of the highest developmental level had significant positive relationships between developmental level and calories and niacin but a significantly negative relationship with calcium. The mean intake of the other nutrients was similar to the means of the girls in the lowest developmental level.

14. For the girls and boys in the average developmental level group, a significant decrease in developmental level occurred as the serum ascorbic acid or carotenoid concentrations increased. The relationship was less consistent for the girls and boys in the other two groups.

15. The boys increased significantly in developmental level with increases in hemoglobin concentration in the

-204-

blood. For the girls the relationship was apparent only in the group of average developmental level.

16. The relationship between developmental level and protein intake was not so apparent when the effect of age was partially removed. a second a second second

CONCENTRATIONS OF BLOOD CONSTITUENTS OF IOWA CHILDREN IN RELATION TO NUTRIENT INTAKE, BODY MEASUREMENTS AND TO EACH OTHER

Serum Ascorbic Acid Concentration of Iowa Children

The function of ascorbic acid in the synthesis of intercellular material has been known to nutritionists for a long time. Recently evidence has been disclosed for other uses of ascorbic acid by the organism. Sealock and Silberstein (1939) observed in scorbutic guinea pigs and Levine, Marples and Gordon (1939) observed in premature infants that very low ascorbic acid intakes were associated with abnormalities in the metabolism of tyrosine and phenylalanine. They concluded that vitamin C is needed for the body to utilize these amino acids efficiently.

Within the past year King and co-workers (1953) noted that scorbutic animals did not utilize the acetate radical in the synthesis of cholesterol.

In children it is important to maintain a high degree of tissue saturation since they are building body tissue and since they are apt to be easily infected by communicable diseases.

-206-

King (1938) found that growing tissues were richer in vitamin C than adult tissue, also that tissues with high metabolic activity were rich in the vitamin. It has also been shown by King and Menten (1935) that the reduction of the serum ascorbic acid concentrations lowered the resistence of the organism to bacterial toxins. Hamil <u>et al</u>. (1938) observed that children with low ascorbic acid intakes showed no scorbutic symptoms except when the low intake of the child was accompanied by an infection. After the infection was relieved, the symptoms disappeared, although the intake of ascorbic acid was not changed. The phagocytic activity of white blood cells is dependent upon the concentration of ascorbic acid in the blood. The maximum activity was obtained at the concentrations of 0.7 milligram per cent (Ames and Nungester, 1947).

There is a consensus that a satisfactory serum ascorbic acid concentration for children lies between 0.7 to 1.0 milligram per cent. Moyer and co-workers (1948) in reviewing the literature for criteria to evaluate vitamin C concentrations of American children found very few investigators considered that it was necessary to have concentrations of 0.7 milligram per cent as a satisfactory concentration. Most of them used 0.4 milligram per cent or less as the criterion for satisfactory concentrations of ascorbic acid. Values below 0.4 milligram per cent are believed by other investigators to represent unsatisfactory concentrations.

-207-

<u>Mean serum ascorbic acid concentrations of total sample</u> of Iowa children

Serum ascorbic acid concentrations were obtained on 329 boys and 326 girls ranging in age from 6 to 18 years. These children lived in large cities or small towns in Iowa.

The blood samples were obtained during the school years 1949 to 1951. A single observation was made on each child. The value of the concentration of serum ascorbic acid for each child was the mean of at least three determinations. One observation on a single individual may not be a good indicator of a single individual's status with respect to ascorbic acid nutrition. Yet, a single observation on a group of individuals may give a good estimate of the status of ascorbic acid nutrition of the population under study. Moyer <u>et al</u>. (1948) noted that the variation between determinations is less than the variation between day to day observations. The variation in an individual's ascorbic acid concentration from day to day was also observed by Storvick and her associates (1950) in their study of ascorbic acid needs for boys and girls during puberty.

The mean serum concentrations of ascorbic acid for Iowa children of each age and sex tended to decrease

-208-

irregularly with age. The lowest concentrations were obtained at 14 to 18 years for the boys and at 13 to 14 years for the girls (see Table 52). In the late teens the girls had higher concentrations which may indicate that the great need of the vitamin for growth had decreased. Therefore, the mean ascorbic acid intake approximating the allowances did maintain a satisfactory blood level, when the stress of growth had been removed. It may be noted that low concentrations occurred for a span of three years surrounding puberty in both sexes.

The mean daily ascorbic acid content of the diets of the boys 14 to 18 years and of the girls 13 to 15 years either exceeded or approximated the allowances. Storvick <u>et al</u>. (1947) observed that adolescent boys and girls could not maintain tissue saturation at intakes equal to the allowances. Young and Pilcher (1950) suggested 25 per cent of the calculated dietary intakes of ascorbic acid be deducted for losses in preparation and during storage. Even with this consideration the vitamin C intake would not account entirely for the low concentrations noted during puberty.

The decrease in serum ascorbic acid concentrations with age was observed by Clayton <u>et al</u>. (1953) in serum ascorbic acid concentrations of children in the Northeast

-209-

Mean Serum Ascorbic Acid Concentrations of Iowa Children

Age yr.	No.	Mean mg.%	Standard deviation mg. %	Standard error mg.%	Range mg • %					
Boys										
678 9011 1213 14156 1718	21 26 37 35 24 27 14 15 7 10	0.91 0.83 0.86 1.07 0.80 0.88 0.72 0.70 0.56 0.56 0.56 0.60 0.47	0.57 0.46 0.51 0.57 0.43 0.48 0.39 0.50 0.35 0.35 0.32 0.32 0.42	0.12 0.09 0.08 0.10 0.08 0.10 0.05 0.10 0.08 0.06 0.09 0.12 0.13	0.30 - 2.18 0.16 - 1.79 0.15 - 2.00 0.15 - 1.85 0.14 - 1.74 0.33 - 1.87 0.22 - 1.74 0.15 - 1.81 0.15 - 1.60 0.19 - 0.88 0.15 - 1.19 0.21 - 1.94 0.13 - 1.34					
Girls										
6 7 9 10 11 12 13 14 15 16 17 18	24 32578 325325507 1507	0.96 1.05 0.94 1.00 0.70 0.73 0.49 0.58 0.47 0.67 1.01 1.00	0.53 0.49 0.61 0.58 0.58 0.55 0.35 0.35 0.31 0.31 0.49 0.50 0.56	0.11 0.08 0.12 0.09 0.11 0.06 0.06 0.06 0.13 0.07 0.12 0.20 0.20	$\begin{array}{r} 0.19 & - 1.87 \\ 0.26 & - 2.10 \\ 0.20 & - 2.50 \\ 0.14 & - 2.47 \\ 0.28 & - 1.92 \\ 0.23 & - 1.64 \\ 0.16 & - 2.29 \\ 0.12 & - 1.27 \\ 0.09 & - 1.69 \\ 0.12 & - 1.25 \\ 0.16 & - 1.62 \\ 0.22 & - 1.95 \\ 0.27 & - 1.69 \end{array}$					

a she was

is.

Region. These investigators observed a sex difference at 13 to 15 years. This sex difference may be due to the differences in the rate of maturation usually found between sexes. At 13 years the girls had a lower concentration than the boys. At 17 and 18 years the girls had a much higher concentration than the boys. The boys at these ages continued to have low concentrations noted at puberty.

The range for each age-sex group extended from somewhat less than 0.2 milligram per cent to approximately 2.0 milligrams per cent. Although the highest levels around the age of puberty were low as compared with the highest at other ages, the mean daily vitamin C intake increased rather than decreased with age. The changes must have been affected by factors related to their physiological development.

Study of three groups of boys and girls classified according to serum ascorbic acid concentrations

To study the characteristics of individuals who had a particularly low or high serum ascorbic acid concentration, each age-sex group was divided into three groups according to the mean and standard deviation. In Group I

-211-

were all the individuals who had serum ascorbic acid concentrations in the second or third standard deviation below the mean; in Group II, those in the second and third standard deviation above the mean; in Group III, those within plus or minus one standard deviation.

In Table 53 are presented the mean serum ascorbic acid concentrations of the three groups by age and sex. Again the concentrations of each group decreased irregularly with age to the minima at the age interim 13 through 18 years for boys and 13 to 16 years for girls (see Figure 29).

The boys and girls in Group II were able to maintain the "so-called satisfactory level" during puberty while the children in Group I could not. A mean serum concentration of 0.8 was observed for the 15 year old boys in Group II on a mean calculated intake of 117 milligrams of dietary ascorbic acid. The boys in Group II had mean serum concentrations of 0.8 to 1.80 milligrams per cent which they maintained with mean daily intakes of 81 to 158 milligrams.

The girls in Group II were able to maintain a concentration of 1.00 milligram per cent or higher at a mean daily intake of ascorbic acid varying from 85 to 92 milligrams. The girls and boys in Group I had concentrations of about 0.2 to 0.3 milligram per cent on intakes ranging

1

-212-

Table	53
-------	----

Mean Serum Ascorbic Acid Concentrations of Iowa Children Classified According to Levels of Ascorbic Acid Concentrations

Groupsa	I		II			III		
Age yr.	No.	Mg.%	No.	Mg.%	No.	Mg.%		
			Boya					
6 7 8 9 10 11 12 13 14 15 16 17 18	3597748513310	0.32 0.28 0.27 0.29 0.25 0.36 0.28 0.17 0.15 0.24 0.17 0.21	4667750523322	1.80 1.51 1.63 1.83 1.43 1.54 1.54 1.52 1.28 0.81 1.08 0.97 1.24	14 15 22 18 156 14 18 94 8	0.78 0.74 0.89 1.08 0.77 0.80 0.64 0.62 0.64 0.62 0.48 0.52 0.75 0.28		
			<u>Girls</u>					
6 7 8 9 10 11 12 13 14 15 16 17 18	5636577911121	0.31 0.41 0.25 0.28 0.33 0.30 0.22 0.15 0.09 0.12 0.16 0.23 0.27	665775 <u>7</u> 5888888	1.66 1.75 1.87 1.88 1.78 1.37 1.42 1.02 1.46 1.02 1.60 1.84 1.68	13 19 17 26 252 17 10 12 12 5	0.88 1.03 0.80 0.84 0.87 0.63 0.61 0.40 0.40 0.40 0.56 0.99 0.68		
Groups - Serum ascorbic acid concentrations I Minus 2 or 3 standard deviations. II Plus 2 or 3 standard deviations. III Within ± 1 standard deviation.								

449-14-14 August 1-149-24

n - any serie constructions in the second provide an approximate state of the second
مكسب هوتكي 📶

Fig. 29 Mean serum ascorbic acid concentration of lowa children classified according to three groups of ascorbic acid concentrations

-214-

from 45 to 60 milligrams of ascorbic acid (see Figure 30).

The low serum ascorbic acid concentrations in Group I were associated with low intakes (see Table 54). A group of British workers (Vitamin C Sub-Committee, 1948) claimed that 35 milligrams would maintain a satisfactory serum ascorbic acid concentration. Williams and co-workers (1951) found 35 milligrams or less of dietary ascorbic acid to be associated with 0.8 milligram per cent of serum ascorbic acid in the Groton Township study. Williams in his analysis of the data disregarded age and sex. The mean intakes of Iowa children in Group I were not so low as those found by British workers and Williams, yet the serum concentrations were in the unsatisfactory ranges.

Babcock <u>et al</u>. (1953) suggested that the relationship between dietary intake and the concentration of the corresponding constituent in the blood might be expected to be higher in the lower levels than in the higher. The simple correlation was calculated to obtain the degree of relationship between the serum ascorbic acid concentrations and ascorbic acid intake of Groups I and II and for the boys and the girls. The correlation coefficients were:

		Boys	Girls
Group	I	0.17	-0.11
Group	II	0.17 -0.06	0.11 .

-215-

Fig. 30 Mean daily ascorbic acid contents of the diets of two groups of lowa children classified according to serum ascorbic acid concentration

-216-

Table	54
	2.

Mean Serum Ascorbic Acid Concentration and Mean Ascorbic Acid Content of the Diets of Two Groups of Iowa Children

Groupsa	I		II	
Age yr.	Serum concentration mg.%	Intake mgs.	Serum concentration mg.%	Intake mgs.
		Boys		
6 7 9 10 11 12 13 14 15 16 17 18	0.32 0.28 0.27 0.29 0.25 0.36 0.28 0.17 0.15 0.24 0.17 0.21	65 46 55 71 59 65 58 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1.80 1.51 1.63 1.83 1.43 1.54 1.54 1.52 1.28 0.81 1.08 0.97 1.24	93 81 76 95 101 105 101 158 85 117 151 101 148
		<u>Girls</u>		
6 7 8 9 10 11 12 13 14 15 16 17 18	0.31 0.41 0.25 0.28 0.33 0.30 0.22 0.15 0.09 0.12 0.16 0.23 0.27	40 49 66 54 71 91 56 45 93 78 78	1.66 1.75 1.87 1.88 1.78 1.37 1.42 1.02 1.46 1.02 1.60 1.84 1.68	106 84 96 103 118 80 106 85 105 92 109 89 125
	I Minus 2	or 3 stand	concentrations ard deviations. rd deviations.	

-217-

u u nitery

They were not significant. The highly significant relationship reported by other investigators was not apparent in the Iowa data. The relationship in the Iowa data may have been reduced by the fact that only segments of the entire sample of boys and girls were used in the analysis.

Moschette and co-workers (1952) obtained a highly significant relationship between serum ascorbic acid concentration and vitamin C intake (r = 0.45). Babcock <u>et al</u>. (1953) secured a correlation coefficient of 0.24 between serum concentration and intake of ascorbic acid of the New York children, and 0.42 for the Maine children. The highly significant relationship may be partially due to the large number of observations in the analysis, also to the limited age range in the studies of Moschette and Babcock.

<u>Physical status</u>. The boys and girls in Group II tended to be slightly taller than the children in Group I. This observation was especially notable among the girls and boys from 6 to 13 years. It appeared from these data that the serum concentration of ascorbic acid is related to linear growth, although the difference between the two groups was small. In 9 of the 13 age groups the girls with highest serum ascorbic acid concentrations were taller than the girls

-218-

with the lowest at corresponding ages. For the boys the same relationship was noted in 3 of the 13 age groups. The relationship was continuous from 6 through 13 years.

No similar relationship was noted between serum ascorbic acid concentration and weight. The boys in Group I tended to be slightly heavier than the boys of Group II. For the girls the opposite was observed, the girls in Group II were slightly heavier than Group I.

<u>Nutrient intake</u>. The mean nutrient intake of the diets of the boys and girls in Groups I and II are presented in Tables 55 and 56. There was no relationship between serum ascorbic acid concentration of the boys and girls in Groups I and II and the caloric value of their diets.

There was a marked difference in the protein intake of children in the two groups. With a few exceptions the children, both the boys and the girls, in Group II (highest serum ascorbic acid concentration) had diets with higher protein content than the children in Group I (lowest serum ascorbic acid concentration). This relationship may be associated with the economic status of the children for Pilcher <u>et al</u>. (1950) have shown that as the expenditure for food increased so did the consumption of foods rich in ascorbic acid and protein.

-219-

Table 55

Mean Daily Food Energy and Mutrient Content of Diets of Iows Children Classified According to Serum Ascorbic Acid Concent

Boys

Age in yrs.	No.	Group ^a	ng. \$	Yood energy cal.	Protein 6 7.	Calcium ^m g.	Iron mg.	Vitamin A Value	Aeco ac E
6	3	I	0.32	2310	73	1099	10	4641	6
	3 4	II	1.80	2304	73 68	1211	9	7023	9
7	5	I	0.28	2035	63	1063	10	4823	4
·	5 6	II	1.51	2035	65	1035	10	6009	8
8	9	I .	0.27	2242	69	1115	9	3913	4
	9 6	II	1.63	2246	74	1164	10	8244	7
9	7	I	0.29	2487	75	1060	12	10944	5
-	7 7	II	1.83	2576	83	1134	12	9383	9.
10	7	I	0.25	2419	74	900	12	5155	5
	7 7	II	1.43	2377	75	971	11	9338	10
11	4	I	0.36	2670	77	1150	11	5791	7
	4 5	11	1.54	2589	80	1188	11	7987	10

I Ninus 2 or 3 standard deviations

II Plus 2 or 3 standard deviations

and the state of the

.

Table 55

ly Food Energy and Mutrient Content of Diets of Iowa Classified According to Serum Ascorbic Acid Concentration

_	
1.0	

Food onergy oal.	Protein En.	Galcium ng.	Iron	Vitamin A value	Ascorbic acid Mg.	Thiamine Mg.	Ribo- flavia E.	Niacin M6.
2310	73	1099	10	4641	65	1,1	2.0	12
2304	68	1211	9	7023	93	41	2.0	10
2035	63	1063	10	4823	45	0.9	1.8	10
2035	65	1035	10	6009	81	1.0	1.9	12
2242	69	1115	9	3913	46	1.0	2.0	12
2246	74	1164	10	8244	76	1.0	2.1	12
2487	75	1060	12	10944	58	1.2	2.3	14
2576	83	1134	12	9383	95	1,2	2.2	15
2419	74	900	12	5155	55	1,1	1.8	15
2377	75	971	11	9338	101	1,1	1.8	14
2670	77	1150	11	5791	71	1.1	2.1	12
2589	80	1188	11	7987	105	1.7	2.1	12

ncentrations

MARIN WHEN CARLINGED STREET ST

deviations

sviations

ŝ

Age in yrs.	No.	Group [®]		Food energy cal.	Protein gm.	Calcium Hg.	Iron EG.	Vitamin A value	Ascorb acid ng.
12	8	I	0.28	2590	80	11 <i>3</i> 4	12	5597	51
	10	II	1.44	2769	91	1283	13	11119	101
13	5	I	0.17	2671	82	1252	12	3921	49
	5	II	1.52	2832	90	1463	13	12446	158
14	1 2	II	0.15 1.28	2953 2934	82 80	622 886	16 12	4460 4370	60 85
15	3 3	I	0.24 0.81	2718 3266	72 107	864 1214	12 15	8657 62 6 4	55 117
16	3	I	0.17	3479	91	957	14	4515	64
	3	II	1.08	3177	104	1543	16	15976	151
17	1	I	0.21	3636	102	1089	15	4848	51
	2	II	0.97	3669	123	2082	16	7046	101
18	0 2	II	1.24	36 84	119	1394	- 17	9818	142

-221-

Food energy cal.	Protein gm.	Calcium E.	Iron ng.	Vitamin A Value	Ascorbic acid mg.	Thiamine E.	Ribo- flavin mg.	Niacìn mg.
2590	80	1134	12	5597	51	1.3	2,2	14
2769	91	1283	13	11119	101	1.4	2.3	15
2671	82	1252	12	3921	49	1.2	2,2	13
2832	90	1463	13	12446	158	1.5	2.8	15
2953	82	622	16	4460	60	1.4	1.6	15
2934	80	886	12	4370	85	1.2	1.9	16
2718	72	864	12	8657	55	1,1	1.7	12
3266	107	1214	15	6264	117	1.5	2.3	19
3479	91	957	14	4515	64	1.5	1.9	18
3177	104	1543	16	15976	151	1.7	2.8	18
3636 ·	102	1089	15	4848	51	1.6	2,2	17
3669	123	2082	16	7046	101	1.7	3.4	18
•	-	-	-	•	-	•	-	-
3684	119	1394	17	9818	142	1.7	2.9	20

•

.

.

والمارية المراجع والمحدوقة المراجع المحافظ المحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمح .

Table 56

Mean Daily Food Energy and Mutrient Content of Diets of Iows Children Classified According to Serum Ascorbic Acid Concent

Girle

Age in yrs.	No.	Group ^a	mg.\$	Food energy cal.	Protein gm.	Calcium Mg.	Iron BS.	Vitamin A Value	Asco: ac: H
6	5	I	0,31	1925	60	939	9	4409	
•	5 6	I II	1.66	2048	63	914	10	7719	10
7	6	I	0.41	1856	55	8 5 8	8	4176	4
•	6 6	IL	1.75	1993	60	970	8	8178	8
8	3	I	0.25	1957	57	867	8	2942	6
	3 5	I II	1.87	2157	72	1230	10	10292	9
9	6	I	0.28	2362	65	874	10	5601	6
•	6 7	I II	1.88	2371	75	1013	12	9336	10
10	5	I	0.33	2283	69	1013	10	5508	5
	5 7	II	1.78	2218	76	1191	11	11774	ú
11	4	I	0.30	2248	68	904	10	5237	4
	4 5	II	1.37	2218	71	939	10	6068	8

Group Serve Ascorbic Acid Concentrations

I Minus 2 or 3 standard deviations

II Plus 2 or 3 standard deviations

ŝ

.

Table 56

ily Food Energy and Mutrient Content of Diets of Iowa n Classified According to Serum Ascorbic Acid Concentration

Food energy cal.	Protein gm.	Calcium Mg.	Iron Mg.	Vitamin A value	Ascorbic acid Es.	Thiamine Eg.	Ribo- flavin =g.	Niacin E.
1925	60	939	9	4409	40	0.9	1.6	10
2048	63	914	10	7719	106	1.0	1.7	11
1856	55	858	8	4176	49	0.9	1.5	10
1993	60	970	8 8	8178	84	1.0	1.8	9
1957	57	867	8	2942	6 8	1.0	1.5	9
2157	72	1230	10	10292	96	1.1	2.3	10
2362	65	874	10	5601	69	1.1	1.8	13
2371	75	1013	12	9336	103	1.2	2,1	13 14
2283	69	1013	10	5508	54	1.0	1,8	12
2218	76	1191	11	11774	118	1.2	2.3	12
2248	68	904	10	5237	47	1.0	1,8	11
2218	71	939	10	6068	80	1.2	1.9	13

0irls

Concentrations

d deviations

L deviatione

Age in yrs.	No.	Group [®]	ng. \$	Jood energy cal.	Protein gm.	Calcium Mg.	Iron mg.	Vitamin A value	Ascor aci mg
12	7	I	0,22	2777	80	971	13	5713	71
	13	II	1.42	2630	82	1188	12	7835	106
13	3	I	0.15	1975	60	814	9	6278	59
-	3 5	II	1.02	2422	78	1013	ú	5866	85
14	1	I	0.09	2489	81	1352	11	6010	61
	1 2	I II	1.46	2586	88	1285	13	10077	105
15	1	I	0,12	2632	69	545	12	16733	45
-	1 2	I II	1.02	2695	84	1192	12	8136	92
16	1	I	0.16	1756	42	426	7	1793	49
	1 2	II	1.60	2310	74	1190	n	6546	109
17	2	I	0.23	2890	81	927	15	12872	73
•	2 2	II	1.84	2202	71	965	10	4630	89
18	1	I	0.27	3024	91	630	14	14983	87
	1 2	II	1.68	1961	62	824	10	4458	125

.

٠

.

•

.

Table 56	(continued)
----------	-------------

-223-

Food energy cal.	Protein E .	Calcium mg.	Iron mg .	Vitamin A value	Ascorbic acid mg.	Thiamine MG.	Ribo- flavin =g.	Miacin Mg.
2777	80	971	13	5713	71	1.3	1.8	14
2630	82	1188	12	7835	106	1.3	2.2	14
1975	60	814	9	6278	59	1.0	1.6	11
2422	78	1013	ú	5866	85	1.2	1,8	14
2489	81	1352	11	6010	61	1.2	2.4	14
2586	88	1285	13	10077	105	1.3	2.2	13
2632	69	545	12	16733	45	1.1	2.1	16
2695	84	1192	12	8136	92	1.0	2.1	12
1756	42	426	7	1793	49	0.8	0.9	8
2310	74	1190	n	6546	109	1.2	2.2	12
2890	81	927	15	12872	73	1.4	1.9	16
2202	71	965	10	4630	89	1,1	1.8	11
3024	91	630	14	14983	87	1.4	1,1	21
1961	62	824	10	4458	125	1,1	1.6	11

•

.

. . .

•

.

With the exception of the 7-year-old boys and the 14year-old girls, the calcium intake of the children in Group II was higher than that for the children in Group I.

There was a tendency for the iron content of the diets of the children in Group II to be higher than that for the children in Group I.

The diets of the boys and girls in Group II tended to have higher vitamin A values than the diets of the children in Group I.

The mean daily thiamine, riboflavin and niacin contents of the diets of the children in Group II tended to be greater than those of the boys and girls in Group I (see Tables 55 and 56).

From these data it appeared that children who had the highest serum ascorbic acid concentration had diets richer in protein, minerals and vitamins than those of children with lowest serum concentrations of ascorbic acid. From these findings it appeared that children with lowest serum ascorbic acid concentrations lived on a nutritional plane considerably lower than the children with the highest serum concentration of ascorbic acid. The effects of other dietary deficiencies than ascorbic acid must be considered in the evaluation of nutritional status in respect to ascorbic acid. <u>Concentrations of various blood constituents</u>. For the children of the highest, lowest and average concentrations of ascorbic acid, the serum carotenoid concentrations followed the trends similar to those of the concentrations of serum ascorbic acid. The minima of the serum carotenoid concentrations in the three groups of boys and girls appeared within two years after the minima for the serum ascorbic acid. From these data it seemed that both blood constituents are utilized rapidly by the growing child in the formation of new tissue whether it be bone or muscle (see Table 57).

The boys with the highest serum ascorbic acid concentration reached the maximum in serum alkaline phosphatase concentration at 13 years, the boys with the lowest concentration of serum ascorbic acid reached the maximum at 15 years. It may be concluded that the boys in Group II matured earlier than did the boys in Group I (see Table 58).

The girls with the lowest serum ascorbic acid concentration had an especially high concentration of serum alkaline phosphatase at 10 and 11 years, during the interim when the greatest increment in height was made.

With a few exceptions the girls with the highest serum ascorbic acid concentrations tended to have higher hemoglobin concentrations in the blood than the girls with the

-225-

Groupsa		ľ		II	I	II
Age yr.	No.	Mcg. %	No.	Mcg.%	No.	Mcg.%
			Boys			
6 7 8 9 10 11 12 13 14 15 16 17 18	3596738513210	121 100 81 782 974 551 548 751 548 751	4 566 750 52 3322	107 117 124 128 146 138 113 146 150 104 76 81 96	14 15 19 19 26 14 14 78 48	102 136 130 115 130 127 108 100 83 64 92 151 96
			<u>Girls</u>			
6 7 8 9 10 11 12 13 14 15 16 17 18	36 36 54 73111 81	77 114 114 79 99 83 76 60 111 77 41 130 126	56 56 7 51 58 88 88	129 150 150 130 173 116 114 110 110 98 114 152 182	16 19 26 16 57 10 12 16 4	153 116 106 117 118 106 81 84 90 101 93 105 116

Mean Serum Carotenoid Concentrations of Iowa Children lassified According to Serum Ascorbic Acid Concentrations

Table 57

^a Groups	- Serum ascorbic acid concentrations
I	Minus 2 or 3 standard deviations.
II	Plus 2 or 3 standard deviations.
III	Within ± 1 standard deviation.

Contraction of the

IT SALAR

Table	58
-------	----

Mean Serum Alkaline Phosphatase Concentrations of Iowa Children Classified According to Serum Ascorbic Acid Concentrations

Groups ^a		I		II	1	III	
Age yr.	No.	NP.U.b	No.	NP.U.	No.	NP.U.	
			Boys				
6 7 9 10 11 12 13 14 15 16 17 18	349775851331	5.05 4.69 5.88 5.19 5.19 5.18 7.03 5.03 5.03 5.03 5.03 5.03 5.03 5.03 5	4667759423322	4.77 5.41 5.15 5.15 5.17 5.290 4.276 3.58 7 4.26 8 7.20 8 2.058 7 2.058 7	14 15 22 18 156 17 14 8 9 4 8	4.25 5.10 5.59 5.14 5.28 6.18 6.307 1.31 2.53	
			<u>Girls</u>				
6 7 9 10 11 12 13 14 15 16 17 18	56 30 54 7311121	4.54 5.16 4.34 7.67 9.13 5.53 9.55 2.166 2.87 1.26 1.56	665775 <u>3</u> 52222	4.98 4.37 5.59 4.60 5.45 5.81 2.09 1.83 2.33	13 19 17 26 252 17 10 12 16 4	5.16 5.02 4.75 5.49 5.49 5.32 2.98 1.29 2.98 1.29 1.29 1.29	

aGroups - Serum ascorbic acid concentrationsIMinus 2 or 3 standard deviationsIIPlus 2 or 3 standard deviationsIIIWithin ± 1 standard deviation

and and

^bNitrophenol units.

-227-

lowest concentration of ascorbic acid. The boys showed no outstanding differences in hemoglobin with serum ascorbic acid concentration (see Table 59).

Summary

1. The serum concentrations of ascorbic acid of boys and girls decreased irregularly with age. The lowest concentrations were attained at 14 to 18 years for boys and 13 through 15 years for girls.

2. Dietary intakes of ascorbic acid equal to the allowances did not maintain a uniformly high serum ascorbic acid concentrations at all ages during the school years. The serum concentrations of ascorbic acid were evidently influenced by the intake and by physiological changes accompanying growth.

3. The children with low serum ascorbic acid concentrations did have a lower intake of vitamin C than did the children with the highest serum ascorbic acid concentration, but a significant relationship was not noted in the correlation between serum concentration and intake of ascorbic acid of the two extreme groups of children.

4. The children with the highest serum ascorbic acid tended to be slightly taller than the children with the lowest serum ascorbic acid concentration.

-228-

I		I	I		III	
No.	Gm. %	No.	Gm.%	No.	Gm.%	
		Boys				
359674731331	12.7 12.8 13.4 13.3 12.4 13.5 13.9 14.5 14.0 14.5 13.6	4 566 7 50 4 2 3 3 2 2	12.2 13.3 13.1 13.4 12.9 13.4 13.6 13.6 13.6 14.5 14.2 14.8 14.8 14.8	14 152 21 156 17 18 94 8 94 8	13.4 12.8 13.2 13.1 13.1 13.4 13.4 13.4 13.4 13.4 13.4	
		<u>Girls</u>				
4616547811121	13.5 12.7 12.2 12.6 13.4 13.9 11.9 13.2 12.1 14.0 12.4 12.3	6547753522222	12.4 13.2 13.1 12.9 13.3 12.8 13.5 12.9 14.5 13.0 13.9 14.0 13.2	13 19 17 16 252 17 10 12 12 6 4	12.7 12.8 12.9 12.9 13.3 13.4 12.0 13.2 13.2 13.2 13.2 13.2 13.2	
	No. 359674731331	No. Gm. $%$ 3 12.7 5 12.8 9 13.4 6 13.3 7 12.8 4 13.5 3 13.9 1 14.7 3 14.6 3 14.5 1 13.6 4 13.5 6 12.7 1 13.6 4 13.5 1 13.6 4 13.5 5 12.6 4 13.4 7 13.9 3 11.9 1 13.2 1 13.2 1 12.1 1 14.0 2 12.4	No. Gm. % No. Boys Boys 3 12.7 4 5 12.8 5 9 13.4 6 6 13.3 6 7 12.8 7 4 13.4 5 7 13.5 10 3 13.9 4 1 14.7 2 3 14.0 3 1 14.7 2 3 14.0 3 1 13.6 2 $$ $ 2$ 1 13.6 2 $$ 2 2 1 13.5 6 6 12.7 4 6 12.7 7 4 13.5 6 12.7 4 13.4 7 13.9 13 3 11.9 5	No. Gm. % No. Gm. % Boys Boys Boys Boys Boys 3 12.7 4 12.2 13.3 13.4 13.1 6 13.3 6 13.1 13.4 13.1 13.1 6 13.3 6 13.4 7 12.9 14.1 1 13.4 5 13.2 7 13.5 10 13.4 3 13.9 4 13.6 14.5 14.5 14.5 3 14.0 3 14.5 3 14.2 1 13.6 1 14.7 2 12.8 14.5 3 14.5 14.8 1 13.6 2 14.8 14.5 14.8 14.5 1 13.6 2 14.8 14.2 14.8 14.2 1 12.7 4 13.1 15.5 13.2 14.5 14.8 1 12.7 7 <td>No. Gm. % No. Gm. % No. Boys Boys Boys No. Gm. % No. 3 12.7 4 12.2 14 5 12.8 5 13.3 15 9 13.4 6 13.1 22 6 13.3 6 13.4 21 7 12.8 7 12.9 18 4 13.5 10 13.4 46 3 13.9 4 13.6 17 1 14.7 2 12.8 14 3 14.0 3 14.5 8 3 14.5 3 14.2 9 1 13.6 2 14.8 4 2 16.0 8 01 12.7 5 13.2 19 1 12.7 7 12.9 24 5 12.2 7</td>	No. Gm. % No. Gm. % No. Boys Boys Boys No. Gm. % No. 3 12.7 4 12.2 14 5 12.8 5 13.3 15 9 13.4 6 13.1 22 6 13.3 6 13.4 21 7 12.8 7 12.9 18 4 13.5 10 13.4 46 3 13.9 4 13.6 17 1 14.7 2 12.8 14 3 14.0 3 14.5 8 3 14.5 3 14.2 9 1 13.6 2 14.8 4 2 16.0 8 01 12.7 5 13.2 19 1 12.7 7 12.9 24 5 12.2 7	

Mean Hemoglobin Concentrations in Blood of Iowa Children Classified According to Serum Ascorbic Acid Concentrations

Table 59

^aGroups - Serum ascorbic acid concentrations I Minus 2 or 3 standard deviations II Plus 2 or 3 standard deviations III Within ± 1 standard deviation.

and a second
States 3

5. The children with the highest serum ascorbic acid concentrations tended to have diets richer in protein, minerals and vitamins than the children with the lowest concentration of serum ascorbic acid.

6. The concentrations of serum carotenoids followed the same trend as of serum ascorbic acid.

7. The girls with the lowest serum ascorbic acid concentration had an especially high concentration of serum alkaline phosphatase during the interim of rapid linear growth (10 to 13 years). The boys with the highest serum ascorbic acid concentration reached the maximum concentration in alkaline phosphatase two years earlier than did the boys with the lowest serum ascorbic acid concentrations.

8. The girls with the highest serum ascorbic acid concentration tended to have slightly higher mean hemoglobin concentrations in the blood than had the girls of the other two groups.

Serum Carotenoid Concentration of Iowa Children

To date there is little evidence that the carotenoids as such function in the human body, although it has been suggested by Szymanski and Longwell (1951) that the carotenoid concentrations may be related to the rate of growth. A study of the possible functions of the

-230-

carotenoids is complicated by the fact that the body is able to transform these substances to vitamin A which, in turn, the body uses or stores.

Animal experimentations (Weise <u>et al.</u>, 1947) have shown that the main site of conversion is the intestinal wall. A certain percentage of the carotenoid substances must be allowed to pass through the intestinal wall unchanged, since carotenoids are found in the blood combined with protein. Apparently other tissues must be able to convert the carotenoids to vitamin A (Bieri and Pollard, 1953).

The concentrations of the carotenoids in the serum reflect the dietary intake of foods rich in this substance. British workers (Report of Vitamin A Sub-Committee, 1945) noted that the serum carotenoid concentration of a group of healthy men dropped notably after subsisting on diets free of carotenes and vitamin A for one week. Pilcher <u>et al</u>. (1950) observed that the consumption of carotene-rich foods increased with the amount of money spent for food. Yarbrough and Dann (1941) found higher serum vitamin A concentrations in subjects of a high-income level than in those of a low-income level.

Investigators do not agree on a concentration of serum carotenoids that is satisfactory. Some investigators believe

-231-

that 125 to 75 micrograms per cent should be the lower limit (Bessey and Lowry, 1947); others, 100 to 50 micrograms per cent (Goldsmith, 1950; Sinclair, 1950). Williams and co-workers (1950) arbitrarily selected 60 micrograms per cent as the dividing line between satisfactory and unsatisfactory concentrations.

<u>Mean serum carotenoid concentration of a total sample of</u> <u>Iowa children</u>

The mean serum concentration of the carotenoids for each age-sex group declined irregularly to a minimum at 15 years for the boys and at 13 years for the girls (see Table 60). Clayton <u>et al</u>. (1953) noted a similar decline in the means of the different school age groups. In that study the children in the 13 to 15 year old group had lower mean concentration of serum carotenoids than the children in the other age groups.

These investigators also observed that the girls tended to have higher mean concentrations than the boys. The Iowa girls appeared to have a similar tendency except at the ages 11 to 13 years, usually regarded as the period of puberty. Some of this sex difference found in the early teens may be due to the different ages of puberty for the two sexes. A more valid comparison of serum carotenoid

-232-

a na ana ana a

Mean Serum Carotenoid Concentration of Iowa Children

Age yr.	No.	Mean mcg.%	Standard deviation mcg.%	Standard error mcg.%	Range mcg.º/o
			Boys		
67890 1012345678 17818	21 254 331 46 56 21 33 70	106 125 116 110 124 116 104 89 72 82 106 96	12.9 47.3 45.0 37.4 42.2 38.8 47.4 38.8 47.4 31.4 31.4 30.1 37.6	2.8 9.5 7.7 6.1 8.3 4.8 9.3 7.6 8.4 13.0 14.0 11.9	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
			<u>Girls</u>		
6789 101123 145678	4158852535407	139 122 116 113 128 105 99 85 99 99 92 120 136	54.38 47.4 3599.8 338.9 338.9 8.6 98.6 338.9 8.6 98.6 338.9 8.6 9.8 8.6 9.8 8.6 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8	11.1 7.2 9.6 5.6 11.3 6.6 4.0 7.7 9.2 6.9 8.0 12.3 13.1	$\begin{array}{r} 49 - 248 \\ 48 - 209 \\ 58 - 262 \\ 58 - 206 \\ 655 - 367 \\ 47 - 180 \\ 40 - 194 \\ 31 - 192 \\ 49 - 174 \\ 64 - 133 \\ 41 - 146 \\ 66 - 188 \\ 91 - 198 \end{array}$

a a state daganganganganan satu projektion a

-

concentrations between the two sexes would be obtained by disregarding chronological age and by matching the data at the ages when the lowest concentrations occurred. The comparison would be made according to physiological development rather than chronological age. When the Iowa data was considered in the above manner, the mean serum concentrations of the girls tended to be slightly higher than those of the boys at most ages.

Based on comparisons at chronological ages, an opposite tendency was noted by Szymanski and Longwell (1951) in their longitudinal study on Denver children. From 6 to 14 years the median for the girls at each chronological age was lower than for the boys.

The low serum carotenoid concentrations during periods of rapid growth cannot be fully explained by a low intake of food rich in carotenoids. The entire sample of children had diets with mean vitamin A values that exceeded the allowances at all ages in both sexes (see Table 12).

In order to explore the relationships between the serum carotenoid concentrations and the vitamin A value of the diet, several simple correlations were computed from the data on the boys. The correlations were between serum concentration of carotenoids and vitamin A value of diet, the vitamin A value from vegetable sources, and age.

-234-

A multiple regression was computed between serum carotenoid concentration, vitamin A value from vegetable sources and age.

Over one-third of the vitamin A value in the diets of the boys came from vegetable sources. The mean daily vitamin A value of the intake of the 305 boys was estimated to be 7641 International Units, with 2755 International Units derived from vegetable sources. Macy (1948) noted a definite rise in the carotenoid concentrations of a group of children, after they had consumed a diet rich in fruits and vegetables for two weeks (Robinson <u>et al.</u>, 1948). Therefore high carotenoid intake may be expected to be reflected in the serum concentrations of Iowa boys.

The correlation between the serum carotenoid concentration and the total vitamin A value of the diets of the boys was small (r = 0.15) but significant. Moschette <u>et al</u>. (1952) obtained a similar value for the correlation between the same two variables. In the Iowa data the relationship was more significant when only the vitamin A value for vegetable sources was considered (r = 0.21).

The correlation between age and serum concentration of carotenoids was significant but negative (r = -0.20).

-235-

The relationship between serum carotenoid concentration and carotenoid intake became greater when age was considered as another independent variable. The multiple R in this calculation was 0.35, which is highly significant. It may be concluded from this analysis that the serum carotenoid is related not only to intake, but also to age.

Indications from the study of Iowa boys are that the serum concentrations did reflect intakes of dietary carotene, but the changes accompanying puberty caused a rapid reduction of the substance in the serum. The conversion of carotenoids to vitamin A may be rapid during prepubertal periods of growth. This finding suggested an increased need of vitamin A during this period. The allowances recommended for age do not take into consideration the great needs of the body during this period.

Study of the three groups of Iowa children classified according to serum carotenoid concentrations

To study the characteristics of individuals who had particularly low or high serum carotenoid concentrations, each age-sex group was divided into three groups according to the mean and standard deviation. In Group I were all the individuals who had serum carotenoid concentrations in the second or third standard deviations below the mean;

-236-

in Group II those in the second and third standard deviation above the mean; in Group III, those within plus or minus one standard deviation.

The mean concentrations for each of the small groups are presented in Table 61. In both sexes the mean serum concentration for each age in the three groups tended to decrease irregularly with age. The minima for each group may be noted at 13 to 15 years for the boys and 13 to 16 years for the girls (see Figure 31).

By comparing the mean daily vitamin A values of the diets of Groups I and II it was evident that girls with low or high serum concentrations of carotenoids had diets correspondingly low or high in vitamin A value. The only exception was at 13 years of age. For the younger boys (7 to 12 years) high serum carotenoid concentrations were accompanied with high mean daily intakes of vitamin A, the low concentrations with low intakes of the vitamin (see Figure 32). The dietary relationship was conspicuously absent for the teen-age boys.

Although the mean serum carotenoid concentration of each age-sex group tended to reflect the intake of vitamin A rich-foods, the correlation between the two variables was negligible, when the entire Groups I or II of the boys and of the girls (6-18 years) was considered in the correlation.

Salar and

-237-

-238-

د از در این ایند. این این و این میرد این این این این این این میشون میشود میرد

Table 61

Setting of the set
Mean Serum Carotenoid Concentrations of the Three Groups of Iowa Children

Groups ^a		C]	I	1	III	
Age yr.	No.	Mog.%	No.	Mog.%	No.	Mcg.%	
		Ē	oys				
6 7 9 10 11 12 13 14 15 16 17 18	3355630530211	50 588 560 586 7586 7 586 7 586 7 586 7 586 7 586 7 586 7 586 7 586 7 586 7 586 7 586 7 587 588 560 7 588 560 7 588 560 7 588 560 7 588 560 7 588 560 7 588 560 7 588 560 7 588 560 7 588 560 7 588 560 7 588 560 7 588 560 7 588 560 7 588 560 7 588 7 586 7 586 7 586 7 586 7 586 7 586 7 586 7 586 7 586 7 586 7 586 7 586 7 586 7 586 7 586 7 587 7 586 7 587 7 587 587 587 587 587 587 587 587	34656 MA 981181	169 213 193 166 202 198 169 195 150 157 218 150 161	158 221 220 338 122 04 38 122 04 8	104 114 109 108 120 111 99 105 89 65 79 98 96	
		G	irls				
6 7 8 9 10 11 12 13 14 15 16 17 18	4 5 2 5 1 4 9 3 2 4 2 1 1	58 60 65 55 77 58 88 69 91	3546160483381	240 185 197 171 367 171 151 153 154 132 136 182 198	171 129 225 318 98 975	140 121 105 112 97 96 79 90 102 87 109 133	
a _{Grou} 1 11	ip - Sem M	lnus 2 or 3	standa	entrations Ird deviati rd deviatio	ons		

IIIFius 2 or 3 standard deviationsIIIWithin ± 1 standard deviation.

المنتقل ال

Fig. 31 Mean serum carotenoid concentration of lowa children classified according to level of carotenoid concentration

-239-

Fig. 32 Mean daily vitamin A value of the diets of lowa children classified according to two groups of serum carotenoid concentration

a 🛓

	Froup I	Boys	<u>Girls</u>
Group		-0.21	-0.07
Group		0.15	-0.07

Merrow <u>et al</u>. (1952) classified the serum carotenoid concentrations of the Vermont children according to the standards of Bessey and Lowry. The children whose serum concentrations were excellent or good were placed into the high group, and those whose concentrations were fair or poor, in the low group. The investigators then studied the relationship between the total vitamin A value of the diets of the children and the concentration of the serum carotenoids. They reported that significant relationship existed between total vitamin A value of the diets and the serum concentration of carotenoids. The two studies on the Iowa children and Vermont children values of serum carotenoids do show a relationship between the intake and serum concentration of the carotenoids.

<u>Physical status</u>. From 6 to 12 years the boys with low serum carotenoid concentrations had slightly lighter weights than the boys with high serum carotenoid concentrations. For the boys from 12 to 18 years and the girls from 6 to 18 years no relationship was evident between serum carotenoid concentration and weight.

The boys from 6 to 12 years in Group I were slightly shorter than the boys in Group II. During puberty the

-241-

girls and boys with high serum carotenoid concentrations tended to be shorter than the children in Group I.

<u>Nutrient intake</u>. The mean nutrient intake of the diets of the boys and girls in Groups I and II are presented in Tables 62 and 63. There was a tendency for the boys and girls with the high serum carotenoid concentration to have a higher caloric intake than the children with low serum concentrations. This tendency was observed in 9 out of 13 age groups. The girls in Group II had diets with higher protein content than the girls in Group I. The boys were not as consistent as the girls in the relationship between serum concentration and protein intake.

The girls in Group II had diets with higher iron and calcium contents than had the girls in Group I. The relationship between serum carotenoid concentrations and the calcium content of the diets of the boys was less noticeable than it was for the girls. The iron content of the boys' diets seemed to follow the same direction as the concentration of the serum carotenoid.

Both the boys and the girls with high serum carotenoid concentration tended to have high intakes of ascorbic acid. The children with low concentrations had low intakes of vitamin C (see Figure 33).

-242-

Nean Daily Food Energy and Mutrient Content of Diete of Iowa Children According to Serum Carotenoid Concentrat

Boys

Age in yrs.	No.	Group ^a	Blood carotene	Yood energy cal.	Protein E .	Calcium mg.	Iron ¤g .	Vitamin A value	Asc: 84
6	3	I	50	2377	68	1120	9	6732	1
	3	II	169	2143	62	921	10	4864	9
7	3	I.	70	1700	56	953	8	3690	•
•	3 4	I. II	213	1936	56 65	998	8 9	8163	
8	5	I	58	2383	70	1112	10	3223	(
	5 6	II	193	2218	74	1152	10	10042	\$
9	5	I	58	2106	59	827	9	5222	1
	5 5	I II	58 166	2114	68	988	n	11938	
10	6	I	60	2421	73	1023	10	5476	1
	6 6	II	202	2143	69	1085	10	8667	0 1
11	3	I	70	2485	73	1076	9	3088	ļ
	3 3	I II	198	2882	88	1209	13	12099	1

- Group Serum Carotenoid Concentration
 - I Minus 2 or 3 standard deviations
 - II Plus 2 or 3 standard deviations

「日本市家」

an Daily Food Energy and Mutrient Content of Diets of wa Children According to Serum Carotenoid Concentrations

Воув

Food energy cal.	Protein ga.	Caloium Mg.	Iron 	Vitamin A value	Ascorbic acid ng.	Thiamine ng.	Ribo- flavin =5.	Niacin Eg.
2377	68	1120	9	6732	48	1,1	2.1	12
2143	62	921	10	4864	59	1.0	1.6	10
1700	56	953	8	3690	36	0,8	1.5	9
1936	56 65	998	. 9	8163	74	0.9	1.9	9 11
2383	70	1112	10	3223	67	1.1	1.9	12
2218	74	1152	10	10042	95	1,1	2.0	12
2106	59	827	9	5222	52	1.0	1.6	11
2114	59 68	988	ú	11938	97	1.1	2.0	12
2421	73	1023	10	5476	49	1.0	1.9	14
2143	69	1085	10	8667	75	1.1	2.0	12
2485	73	1076	9	3088	54	1.0	2.0	24
2882	88	1209	13	12099	108	1.4	2.2	14

n an an an ann an Anna an Anna an Anna an Anna Tha an Anna an Anna an Anna an Anna an Anna Anna an Anna

entration

i deviations

deviations

•

Table 62 (continued)

Age in yrs.	¥o.	Group ^a	Blood carotene	Food energy enl.	Protein gn.	Calcium ng.	Iron ng.	Vitamin A value	Ascor aci ng
12	10	I	58	2703	84	1236	12	9064	80
	12	II	169	2704	86	1168	13	9322	86
13	5	I	46	2717	76	919	12	4155	49
-	5 3	II	195	2903	102	1707	15	14824	169
14	3	I	47	2648	80	1051	12	6905	60
	3 2	II	150	2934	80	886	12	4370	85
15	0 1	I.	-	-	-	•	-	-	-
	1	II	157	3684	126	1383	16	5072	127
16	2 1	I II	31	3368	104	1392	13	5751	64
	1	II	218	3368	96	1150	14	6762	110
17	1	I	52	3898	132	2422	16	7367	77
•	1 2	II	150	3252	99	1406	15	5880	79
18	1 1	I	33	2945	111	1597	12	17019	56
	1	II	33 161	2992	75	571	13	4398	39

.

Food nergy cal.	Protein gm.	Calcium ng.	Iron ng•	Vitamin A value	Ascorbic acid mg.	Thiamine mg.	Ribo- flavin Mg.	Niacin Mg.
							· ·	
2703	84	1236	12	9064	80	1.4	2.4	15
2704	86	1168	13	9322	86	1.3	2.1	14
2717	76	919	12	4155	49	1.3	1.8	14
2903	102	1707	15	14824	169	1,8	3.2	18
2648	80	1051	12	6905	60	1.3	2.1	13
2934	80	886	12	4370	85	1,2	1.7	16
-	-	-	- '	-	-	-	-	-
3684	126	1383	16	5072	127	1.7	2.6	25
3368	104	1392	13	5751	64	1.4	2.7	16
3368	96	1150	14	6762	110	1.9	2.2	16
38 98	132	2422	16	7367	77	1.7	3.8	19
3252	9 9	1406	15	5880	79	1.6	2.6	15
2945	111	1597	12	17019	56	1.6	3.9	20
2992	75	571	13	4398	39	1,1	1.4	12

•.

•

.

.

Nean Daily Food Energy and Mutrient Content of Diets of Iowa Children According to Serum Carotenoid Concentrati

Girls

Age in yrs.	No.	Group [®]	Blood carotene	Food energy cal.	Protein ga.	Calcium Mg.	Iron ¤g.	Vitamin A Value	Ascor aci ng
6	4 3	I	5 8	1821	53	768	8 8	4219	46
	3	II	240	1749	57	751	8	11868	63
7	5	I	66	2032	62	934	9	4348	62
•	5 5	ĪI	185	2099	67	1074	10	9040	97
8	2	I	60	2194	73	1258	9	48 98	39
•	2 4	ĪI	197	2207	76	1354	ú	7981	117
9	5	I	68	2269	60	717	9	3585	88
•	5 6	ĪI	171	2138	68	949	10	6621	83
10	1	I	65	2283	67	1018	10	3920	44
	1 1	ĪI	367	2381	67	883	11	4640	108
11	4	I	55	2147	68	956	10	3649	67
	6	ĪI	171	2117	71	970	10	6472	77

Group	Serum Carotenoid Concentration
I	Minus 2 or 3 standard deviations
II	Plus 2 or 3 standard deviations

بشيري

In Daily Food Energy and Mutrient Content of Diets of The Children According to Serum Carotenoid Concentrations

ATLAN

Food energy cal.	Protein 67.	Calcium mg.	Iron =5.	Vitamin A value	Ascorbic acid E.	Thiamine Mg.	Ribo- flavin Eg.	Niacin BE.
1821	53	768	8	4219	46	0.8	1.3	10
1749	57	751	8	11868	63	0,8	1.7	10
2032	62	934	9	4348	62	1.0	1.7	11
2099	67	1074	10	9040	97	1,1	2.1	12
2194	73	1258	9	4898	39	1.0	2.2	11
2207	73 76	1354	11	7981	117	1,2	2.4	11
2269	60	717	9	3585	88	1,1	1.4	13
2138	. 68	949	10	6621	83	1.7	1.8	12
2283	67	1018	10	3920	i 44	1.0	2.0	15
2381	67	883	11	4640	108	1.8	1.7	10
2147	68	956	10	3649	67	1.0	1.7	10
2117	71	970	10	6472	77	1.1	1.8	12

.

Intration

deviations

leviations

Table 63	3 (continued))
----------	---------------	---

Age in yrs.	No.	Group [®]	bleed carotene	Food energy cal.	Protein gm.	Calcium Mg.	Iron	Vitamin A value	Azco ac
	میں توریخ میں بن میں اور								
12	9	I	57	2287	72	1025	11	5906	70
	9 10	II	151	2532	83	1192	12	11279	8
13	3	I	37	2378	62	684	10	8630	5
	3 4	II	153	2534	82	1067	12	6214	90
14	2	I	54	2549	71	848	13	4119	83
	2 2	II	154	2324	77	1226	13	15434	9
15	4	I .	68	2705	80	964	11	4413	71
	4 3	II	132	2953	89	968	14	9552	13
16	2	I	48	2242	58	518	9	2109	82
	2 3	II	136	2348	73	889	12	6060	77
17	1	I	66	2218	6 8	904	9	2683	47
•	1 2	II	182	2700	80	999	14	7887	7
18	1	I	91	2088	65	900	10	6523	43
	1 1	II	198	2468	80	1212	11	6540	15

Yood energy cal.	Protein gn.	Galcium Eg.	Iron	Vitanin A value	Ascorbic acid ac .	Thiamine E.	Ribo- flavin mg.	Miacin Mg.
2287	72	1025	11	5906	76	1.1	1.8	13
2532	83	1192	12	11279	82	1.2	2.3	14
2378	62	684	10	8630	57	1,1	1.4	13
2534	82	1067	12	6214	96	1.4	2.0	15
2549	71	848	13	4119	83	1.3	1.6	13
2324	77	1226	13	15434	95	1.2	2.9	13
2705	80	964	iı	4413	71	1.2	1.9	14
2953	89	968	14	9552	135	1.5	2.0	18
2242	58	518	9	2109	82	1.0	1.1	12
2348	73	889	12	6060	77	1.2	1.7	13
2218	· 68	904	9	2683	47	0.9	1.7	10
2700	80	999	14	7887	77	1.3	1,8	15
2088	65	900	10	6523	43	0.8	1.5	10
2468	80	1212	n	6540	155	1.3	2.3	14

.

•

•

Mean ascorbic acid content of the diets of Fig. 33 lowa children classified according to two groups of serum carotenoid concentrations

-247-

The girls with high serum concentration of carotenoids had diets that were richer in the B vitamins than had the girls with low concentration. The thiamine, riboflavin and niacin contents of the diets of the boys were not as consistently related to the concentration of serum carotenoids as they were for the girls.

From these data it appeared that the girls with the highest serum concentration of carotenoids tended to have diets that were richer in calories, protein, minerals and vitamins than the diets of the girls in the lowest serum carotenoid concentration group. The boys showed the same tendency, but the relationship was less consistent and regular.

<u>Concentration of various blood constituents</u>. The mean serum carotenoid concentration for each age-sex group are presented in Table 64. For the children with the highest, lowest and average concentrations of serum carotenoids, the serum ascorbic acid concentrations followed trends similar to those of the concentration of the serum carotenoids. For each group the tendency was for the mean of each age to decrease irregularly with age and the lowest serum ascorbic acid concentration was reached within four years of the minimum concentration of the serum carotenoids. It may be noted that the children with average

-248-

Analysis and a second second second

A Distriction

Table 64

Mean Serum Ascorbic Acid Concentrations of Iowa Children Classified According to Serum Carotenoid Concentrations

1		II		III	
No.	Mg.º/o	No.	Mg . %	No.	Mg .%
	E	Boys			
3355632530211	1.04 0.59 0.47 0.50 0.50 0.50 0.26 0.27 0.21 1.00 0.58	946568881181	0.52 0.97 1.29 1.50 0.96 1.37 0.80 1.17 1.28 0.81 0.90 0.48 1.10	15 18 21 22 20 38 12 10 48	0.97 0.89 0.83 1.07 0.84 0.97 0.78 0.74 0.52 0.47 0.60 0.55 0.38
	0	lirls			
352517 9327 211	0.70 0.95 0.52 0.41 0.67 0.55 0.40 0.39 0.39 0.38 0.58	2546160423321	1.10 1.16 1.74 1.27 1.67 0.81 0.94 0.67 0.92 0.46 0.84 1.10 1.69	191 1966 2538 98 975	0.98 1.04 0.82 0.95 1.00 0.68 0.75 0.47 0.57 0.46 0.70 1.05 0.95
	No. 335563 10530211	No. Mg. $%$ 3 1.04 3 0.59 5 0.47 5 0.67 6 0.50 3 0.50 10 0.50 5 0.26 3 0.27 0 2 0.21 1 1.000 1 0.58 3 0.70 5 0.52 1 1.00 1 0.58 3 0.70 5 0.52 1 0.41 4 0.67 9 0.55 3 0.40 2 0.30 4 0.49 2 0.30 1 0.58	No. Mg. % No. Boys Boys 3 1.04 3 3 0.59 4 5 0.47 6 5 0.67 5 6 0.50 6 3 0.50 12 5 0.26 3 3 0.27 2 0 1 2 0.21 1 1 1.00 2 1 0.58 1 1 0.58 1 3 0.70 2 5 0.52 6 1 0.55 10 3 0.40 4 2 0.30 2 3 0.40 4 2 0.30 2 3 0.40 4 2 0.30 3 1 0.58 2	No. Mg. $%$ No. Mg. $%$ Boys 3 1.04 3 0.52 3 0.59 4 0.97 5 0.47 6 1.29 5 0.67 5 1.50 6 0.50 6 0.96 3 0.50 1.37 10 0.50 12 0.80 5 0.26 3 1.17 3 0.27 2 1.28 0 1 0.81 2 0.21 1 0.90 1 1.00 2 0.48 1 0.58 1 1.10 Girls 3 0.70 2 1.10 Girls 3 0.70 2 1.10 5 0.52 6 1.27 1 0.41 1 1.67 4 0.67 6 0.81	No. Mg. % No. Mg. % No. Boys 3 1.04 3 0.52 15 3 0.59 4 0.97 18 5 0.47 6 1.29 23 5 0.47 6 1.29 23 5 0.50 6 0.96 22 3 0.50 3 1.37 20 10 0.50 12 0.80 43 5 0.26 3 1.17 18 3 0.27 2 1.28 12 0 1 0.81 12 2 0.21 1 0.90 10 1 1.00 2 0.48 4 1 0.58 1 1.10 8 3 0.70 2 1.10 19 5 5 0.55 5 1.16 21 2 0.56

aGroup -	- Serum carotenoid concentrations
Ĩ	Minus 2 or 3 standard deviations
II	Plus 2 or 3 standard deviations
III	Within ± 1 standard deviation.

serum carotenoid concentration reached the minima in both blood constituents at the same age.

In Table 65 are presented the mean alkaline phosphatase concentration of the children who have high, low or average serum carotenoid concentrations.

The boys with the highest concentration of serum carotenoids appeared to reach maturity a year later than the boys with the lowest concentration, as may be observed by maximum level in the serum alkaline phosphatase concentrations. The girls with the lowest serum concentration of carotenoid made the greatest increment in height between 9 to 10 years at which time there was a great increase in the concentration of serum alkaline phosphatase.

The boys with the highest serum concentration of carotenoids tended to have lower hemoglobin concentration in the blood than did the boys with the lowest concentration of serum carotenoids (see Figure 34). There were 9 age groups out of 13 at which the hemoglobin concentration of the boys with the highest carotenoid concentrations were lower than the ones for the boys with the lowest serum carotenoid concentrations. With the exception of two age groups the girls with the high carotenoid concentrations had higher hemoglobin concentrations in the blood than had the girls with low concentrations of serum carotenoids (see Table 66).

-250-

Table	65
-------	----

Mean Alkaline Phosphatase Concentrations of Iowa Children Classified According to Serum Carotenoid Concentrations

Groups ^a	I		II		III	
Age yr.	No.	NP.U. ^b	No.	NP.U.	No.	NP.U.
		E	OVB			
6 7 9 10 11 12 13 14 15 16 17 18	3255630330211	2.89 5.73 5.10 5.93 4.13 4.65 6.19 5.71 5.08 1.62 2.19	3465622321121	4.37 6.03 5.96 5.66 4.79 4.48 7.84 3.72 3.97 3.11 2.80	15 18 221 22 20 43 12 12 10 4 8	4.98 5.72 5.07 6.55 4.00 5.09 6.50 5.00 5.00 5.00 5.00 5.00 5.00 5.00
			irls			
6 7 8 9 10 11 12 13 14 15 16 17 18	4 5 2 5 1 3 9 3 2 4 2 1 1	5.52 5.25 5.77 4.13 7.46 5.56 4.88 3.88 2.46 2.12 2.12 2.88	3546160423 ³ 21	6.58 4.45 7.55 4.45 7.45 7.45 7.45 7.56 7.00 2.10 2.4	19 29 29 26 25 38 98 97 5	4.67 4.87 4.84 5.02 5.72 6.37 5.49 4.77 3.17 1.82 2.10 1.47 1.61

a
Group - Serum carotenoid concentrations
I
I
I
I
II
II
III
III
III
III
III
III
III
III
III
III
III
III
III
III
III
III
III
III
III
III
III
III
III
III
III
III
III
III
III
III
III
III
III
III
III
III
III
III
III
III
III
III
III
III
III
III
III
III
III
III
III
III
III
III
III
III
III
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIIII
IIIII
IIIII
IIIII
IIII
IIII
IIII
IIII
IIIII
IIII
IIII
IIII
IIII
IIII
IIIII
IIIIII
IIII
IIIII
IIIII
IIIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIII
IIIII
IIII
IIII
IIII
IIII
IIIIIII
IIIII
IIII
IIII
IIIII
IIIII
IIIII
IIII
IIIIII
IIIIII
IIIII
IIIII
IIIII
IIIII
IIII
IIII
IIII
IIIII
IIIIII
IIIIII
IIIIII
IIIII
IIIIIIIII
IIIIIII
IIIIIIII
IIIIIIII
IIIIIIIII<br

^bNitrophenol units.

Fig. 34 Mean hemoglobin concentrations in blood of lowa children classified according to three groups of serum carotenoid concentrations

Groupsa	I		II		III	
Age yr.	No.	Gm.%	No.	Qm. %	No.	0m.%
		1	Boys			
6 7 8 9 10 11 12 13 14 15 16 17 18	3355630430211	13.1 12.4 12.9 13.6 12.9 13.9 13.9 13.8 13.4 14.5 15.2 16.0	3465631321121	12.3 13.2 12.7 13.5 12.6 13.6 13.6 13.6 13.8 15.0 14.8 12.8	15 18 21 22 20 38 12 10 48	12.3 12.8 13.1 13.2 13.3 13.5 13.6 13.6 13.6 14.9 14.0 15.2
		9	lirls			
6 7 8 9 10 11 12 13 14 15 16 17 18	3525148324211	12.7 12.3 11.2 12.2 12.4 14.2 13.0 13.0 12.4 12.1 14.4 12.1	3440160423321	12.7 13.1 13.0 13.4 13.0 12.9 13.3 13.3 13.3 13.5 13.5 13.7 13.0	191 1966 2538 98 975	12.8 12.9 13.30 13.0 13.9 13.9 12.5 13.1 13.5 13.0 12.7

Mean Hemoglobin Concentration in Blood of Iowa Children Classified According to Serum Carotenoid Concentrations

^aGroup - Serum carotenoid concentrations I Minus 2 or 3 standard deviations II Plus 2 or 3 standard deviations III Within ± 1 standard deviation. and the second secon

Summary

1. For Iowa children the mean serum concentrations of carotenoids tended to decrease irregularly with age until they reached the minimum at 15 years for boys and 13 years for girls. The reduction of the serum concentration with age may indicate that the conversion of the carotenoids to vitamin A was rapid during the changes of puberty.

2. For boys the serum carotenoid concentrations were positively correlated with the intake of carotene-rich foods and negatively correlated with age.

3. The boys with the highest serum carotenoid concentration from 6 to 12 years were lighter in weight but taller than the boys with low serum carotenoid concentrations. The older boys and girls showed no similar relationship.

4. The children with the highest serum carotenoid concentration tended to have diets higher in vitamin A value than the children with the lowest serum carotenoid concentration.

5. The girls with high serum carotenoid concentrations tended to have diets richer in calories, protein, vitamins and minerals than the girls with low serum carotenoid concentrations. The boys did not have as conspicuous a

-254-

relationship between serum concentration and nutrient intake as did the girls.

6. The children with high serum carotenoid concentrations had high serum ascorbic acid concentrations, and the children with lowest concentrations of serum carotenoids had low concentrations of serum ascorbic acid. The children with average concentrations of serum carotenoids had intermediate values for serum ascorbic acid concentrations.

7. The boys with the highest serum carotenoid concentrations seemed to reach maturity a year later than the boys with low concentrations, as noted by the peak level in the serum alkaline phosphatase. The girls with the lowest serum carotenoid concentration exhibited a great rise in serum alkaline phosphatase at 9 to 10 years.

8. The girls with the lowest serum concentrations of carotenoids tended to have lower hemoglobin concentrations in the blood than did the girls with the highest concentration of serum carotenoids. The boys with the lowest concentration of serum carotenoids tended to have higher hemoglobin concentrations in the blood than did the boys with the highest concentrations of serum carotenoids.

-255-

Serum Alkaline Phosphatase Concentrations of Iowa Children

Alkaline phosphatase is an enzyme which is widely distributed in mammalian cells. This enzyme is more concentrated per unit weight in the kidney, liver and intestines than in the bone. The greater part of the phosphatase in the blood comes from the bone because of the large proportion of bone tissue.

Robison (1923) discovered that a young rapidly growing bone was very rich in the enzyme. He noted that long bones from a rachitic rat incubated at 37° in a solution of calcium hexomonophosphate or glycerophosphate at a pH 8.4 to 9.4 were able to deposite "fresh calcium phosphate in the zone of provisional calcification, and particularly in the region of hypertrophic cartilige cells." The observations from his <u>in vitro</u> experiments led Robison to conclude that phosphatase played an important role in the calcification of bone.

Kay (1930) observed a distinct rise in the serum alkaline phosphatase concentrations in individuals who had disturbances either in bone formation or bone maintenance such as occur in osteitis deformans, generalized osteitis fibrosa, osteomalacia and rickets. The increase in the

-256-

phosphatase concentrations correlated roughly with the severity of the diseases.

Talbot (1941) in his studies of the functions of the thyroid gland found that an exceptionally low phosphatase concentration in infancy may be associated with cretinism. He also observed that children who had a tendency toward a low metabolic rate had a lower alkaline phosphatase concentration than children whose basal metabolic rates were within the normal range.

<u>Mean serum alkaline phosphatase concentration of total</u> sample of Iowa children

In the investigation of the nutritional status of Iowa school children the serum alkaline phosphatase concentration was measured on 337 boys and 336 girls. This index of nutritional status was made for the sample of children who attended the urban elementary schools and the small town elementary, junior and senior high schools.

In Table 67 the means, standard deviation, standard error of the mean and the range for all the boys and girls of each age and sex have been tabulated. For both sexes the range became more narrow each year in the last part of the teen years (16 to 18).

-

-257-

Mean Serum Alkaline Phosphatase Concentrations of Iowa Children

Age yr.	No.	Mean NP.U.a	Standard deviation NP.U.	Standard error NP.U.	Range NP.U.
			Boys		
67890112345678151678	2287 33556 5674 1570	4.46 5.37 5.78 90 5.28 4.05 2.8 4.05 2.8 4.05 2.8 4.05 2.8 4.05 2.8 4.05 2.8 4.05 2.8 4.05 2.8 4.05 2.8 4.05 2.18 4.05 2.28 5.29 5.29 5.29 5.29 5.29 5.29 5.29 5.29	1.46 1.32 1.57 1.93 1.69 1.30 2.06 2.16 2.18 2.73 1.80 1.30 0.74	0.31 0.25 0.26 0.33 0.26 0.26 0.26 0.26 0.26 0.24 0.53 0.73 0.49 0.49 0.24	2.26 - 7.82 $3.42 - 8.01$ $2.78 - 9.20$ $3.05 - 12.08$ $1.83 - 9.32$ $2.70 - 8.24$ $2.88 - 13.33$ $2.62 - 12.02$ $2.86 - 11.99$ $1.89 - 11.50$ $2.16 - 8.41$ $1.62 - 5.54$ $1.59 - 4.04$
			Girls		
678910112314516718	272 59 325 39 35 55 4 55 0 7	5.01 4.92 5.32 5.701 5.30 5.30 5.30 5.30 5.30 5.30 5.30 5.30	1.62 1.79 1.71 1.99 2.09 3.56 1.91 1.98 1.54 1.72 0.66 0.59 0.55	0.31 0.32 0.34 0.39 0.62 0.24 0.40 0.41 0.44 0.17 0.19 0.21	2.25 - 8.78 $2.34 - 9.30$ $2.78 - 9.13$ $2.55 - 12.04$ $2.22 - 10.65$ $2.25 - 22.12$ $1.68 - 11.21$ $1.08 - 9.13$ $1.18 - 6.23$ $1.30 - 6.69$ $1.24 - 2.87$ $0.89 - 2.65$ $0.88 - 2.44$

⁸Nitrophenol units.

۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۱۹۹۹ - ۲۰۰۰ ۲۰۰۹ و میر ۱۹۹۰ - ۲۰۰۰ ۲۰۰۹ و میر It was noted from standard deviations and ranges, that the values for the alkaline phosphatase concentrations varied widely about the mean. The standard deviations were largest from 12 to 15 years for the boys and at 11 years for the girls.

Wide variability in serum alkaline phosphatase concentration was noted in other studies. Bodansky (1934) obtained a range of 2.8 to 7.8 nitrophenal units from a study of 27 children 2 to 15 years. This study included so few subjects that the variation of concentrations at each age could not be observed. Talbot (1941) noted a similar range in his study of 70 normal children 2 to 10 years of age.

Adamson <u>et al</u>. (1945) claimed that a range of 2 to 8 nitrophenol units can be expected from normal girls under 13 years and boys under 15 years of age. They found this range in the study of some Newfoundland children who appeared to have no symptoms of vitamin D or calcium deficiency.

The mean serum alkaline phosphatase concentrations obtained by Harrison <u>et al</u>. (1948) on 223 Michigan children, by Clark and Beck (1950) on 401 (part of the whole group) Ohio children, by Bessey and Lowry (1947) on 1200 New York school children, have been charted in Figure 35 along with the Iowa data. Except for the study by Bessey and Lowry,

5

-259-

Fig. 35 Comparison of mean serum alkaline phosphatase concentrations of selected groups of children

-260-

the age range was 6 to 18 years for boys and girls. In the four studies the same method was used to determine the serum alkaline phosphatase concentrations.

The concentrations observed by Harrison <u>et al</u>. (1948) tended to be the highest for both the girls and boys. The observations made by Clark and Beck (1950) were next, and the lowest values were obtained by Bessey and Lowry (1947) on the New York school children. The serum alkaline phosphatase concentrations of Iowa children tended to be intermediate between the values obtained by Clark and Beck and Bessey and Lowry.

Some of the differences found in these four studies may be due to the character of the subjects. The children observed by Harrison <u>et al</u>. (1948) came from five different institutions. They were mainly from broken or underprivileged homes. The observations of Clark and Beck were a part of a longitudinal study on a group of Ohio children who came primarily from stable homes, probably from a higher socioeconomic level than that of the Michigan children. Bessey and Lowry selected schools which they believed to be representative of different socioeconomic level; therefore, these investigators chose schools in the rural area, in small towns and in congested urban areas in and about New York City. The Iowa children were randomly chosen from the school children who attended the city elementary schools and those who attended the small town elementary and high schools. It is the only study where an effort was made to obtain results that were representative of a large population of children. The means for each age-sex group may be more representative of the expected alkaline phosphatase concentrations for a group of children.

There was a marked similarity of trends in the curves which described the mean alkaline phosphatase concentrations of the four groups of children at the various ages, especially for the boys. The serum alkaline phosphatase concentrations rose to a high concentration, then they started to fall so that by the end of puberty they were approaching the concentrations often observed in adults. The serum alkaline phosphatase concentrations for Iowa boys were highest at 12 to 14 years; they attained a peak at 13 years. The high concentrations for Iowa girls extended from 10 to 12 years, with a peak at 11 years. These peaks occurred slightly in advance of the average ages of puberty, 15 years for boys and 13 years for girls (Watson and Lowrey, 1951).

-

-262-

Mulay and Hurwitz (1938) noted high serum alkaline phosphatase concentrations in his study of 272 children just before puberty. Afterwards there was a decline to adult levels. For the individual the decline maybe rapid or gradual and extend to 25 years. Age group averages indicated that in general the decrease from the peak to adult concentrations was gradual.

For boys the mean of serum alkaline phosphtase concentrations reached a peak at 13 years in each of the four studies. In contrast the peak was not reached at a uniform age by the girls in the different studies. The Michigan girls reached the peak a year later, and the Ohio girls two years earlier than the Iowa girls. The age at which the highest values for serum alkaline phosphatase concentrations are attained, is determined primarily by the rate of maturation. The differences in the ages when these groups obtained the highest mean concentrations may be due to the various rates of maturation, which in turn may be influenced by dietary and other environmental conditions.

The depression observed in mean serum alkaline phosphatase concentrations of Iowa boys at the ages of 10 to 11 years was noted to some degree in the data of the other three studies. In the Iowa data this observation may not be merely a sampling peculiarity but a physiological

-263-

depression of the enzyme in the serum just before the increase which accompanied the spurt of growth at puberty. During the time that these lowered mean concentrations prevailed the Iowa boys were making only small increments in height and weight. It was a period when growth was very slow.

After the peak had been reached, the mean serum alkaline phosphatase concentrations as a whole tended to be lower for the girls than for the boys.

Study of three groups of boys and girls classified according to serum alkaline phosphatase concentrations

In order to observe the differences that existed between the children who had high, low or average serum alkaline phosphatase concentrations, each age-sex group was divided into three groups according to the mean and standard deviation. In Group I were all the children who had serum alkaline phosphatase concentration in the second or third standard deviation below the mean; in Group II, those in the second and third standard deviation above the mean; in Group III, those within plus or minus one standard deviation.

In Table 68 are presented the mean serum alkaline phosphatase concentrations of the three groups by age and sex. The means of the serum alkaline phosphatase concentrations of the girls and boys with the lowest levels (Group I)

Table 68

Mean Serum Alkaline Phosphatase Concentrations of Iowa Children Classified According to Level of Serum Alkaline Phosphatase Concentrations

Groups ^a	1	t in the second s		11]	11	ļ	11
Age yr.	No.	Mean NP.U.b	No.	Mean NP.U.	No.	Mean NP.U.	No.	Mean NP.U.
				Boys				
6 7 8 9 10 11 12 13 14 15 16 17 18	3763648521311	2.71 3.57 3.31 2.70 3.43 3.43 3.43 3.45 3.43 3.29 2.62 1.69	5663549213211	6.43 7.32 8.07 10.42 7.89 7.16 9.79 11.32 11.99 9.60 7.62 5.54 4.04	14 19 29 28 18 19 10 58	4.13 5.52 7.79 4.50 5.54 4.50 5.44 5.54 4.85 5.44 3.85 5.44 3.85	228 33556 2656 174 157 10	4.46 5.375 5.7830 5.218 4.905 2.184 5.218 5.218 3.2
				<u>Girls</u>				
6 7 9 10 11 12 13 14 15 16 17 18	6455617310211	2.82 2.52 2.94 2.88 2.85 2.65 1.85 1.18 1.29 0.89 0.88	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	7.33 7.91 8.39 8.59 14.80 8.58 14.80 8.58 5.58 5.56 3.21 2.48 2.33	16 23 17 27 17 29 48 19 13 11 7 4	5.10 4.791 5.20 5.101 5.20 4.57 2.09 1.46 1.46	272 325 323 325 24 150 7	5.01 4.92 5.32 5.71 5.40 5.40 5.40 5.40 2.057 2.057 2.057 2.057 2.057 2.057 2.057 2.057 2.057 2.057 2.057 2.0500 2.050 2.050 2.050 2.0500 2.0500 2.0500 2.0500 2.0500 2.
a GroupSerum alkaline phosphatase concentrationsIMinus 2 or 3 standard deviationsIIPlus 2 or 3 standard deviationsIIIWithin ± 1 standard deviation								

^bNitrophenol units.

n naganan n naganan Anaganan n naganan Anaganan naganan naganan naganan naganan naganan naganan naganan naganan naganan nag failed to show the fluctuations and the peak characteristic of the other two groups (see Figure 36). The concentrations of the girls after 10 years exhibited a slow gradual decrease but the values for the boys in this group were strikingly similar at all ages. According to Talbot (1941) low values may occur in children who have a tendency toward hypothyroidism.

The mean serum alkaline phosphatase concentrations of the boys and girls in Group II (those with high levels) exhibited a definite rise at 14 years for boys and 11 years for girls. The decline from the high peak to the adult levels was rapid. The descent was more irregular for the girls than for the boys. Very high alkaline phosphatase concentrations may denote bone disorders. The values found in this group were probably not within the pathological limits.

The children with serum alkaline phosphatase concentrations within plus or minus one standard deviation of the mean had a definite increase in serum concentration of this substance at puberty. It appeared at 13 years of age for the boys and at 10 years for the girls, but the decrease toward adult levels was not definite for girls until 12. The boys and girls with average concentrations of serum alkaline phosphatase (Group III) reached the maximum

-266-

Fig.36 Mean serum alkaline phosphatase concentration of lowa children classified according to level of serum alkaline phosphatase concentrations

おうな自然にないた日本に

concentration a year earlier than the children in Group II. The high concentrations of serum alkaline phosphatase around the period of puberty would seem to indicate delayed maturation.

<u>Physical status</u>. There was no outstanding difference between the mean heights of the three groups of boys. This finding was not in accordance with Clark and Beck (1950) who reported that the alkaline phosphatase activity is associated with yearly increments of linear growth (see Table 69). The heights of the girls with the highest and average serum alkaline phosphatase concentrations were similar (Groups II and III). The girls with lowest concentrations (Group I) tended to have mean heights that were below the heights for the girls in Groups II and III from 6 through 10 years of age. After 10 years the heights of the girls in the three groups fluctuated, but at some ages the heights of the girls with lowest alkaline phosphatase concentration tended to be greater than the heights of the girls in the other two groups.

From 6 to 10 years of age the boys with the highest concentrations of serum alkaline phosphatase were heavier than the boys with the lowest concentrations. It may indicate that the boys in Group II were maturing more rapidly than

-268-

Table	69
-------	----

Mean Heights of Iowa Children Classified According to Serum Alkaline Phosphatase Concentrations

Groups ^a	I		I	I	I	II
Age yr	No.	Cm.	No.	Cm.	No.	Cm.
			Boys			
6 7 8 9 10 11 12 13 14 15 16 17 18	3767648521311	122 125 130 138 139 152 148 159 158 158 158 158 158 158 158 159	5663549213211	118 126 133 135 143 142 151 158 161 169 174 170 168	12 19 25 29 28 18 19 14 10 57	117 124 131 135 145 148 158 158 171 170 176 174
			<u>Girls</u>			
6 7 8 9 10 11 12 13 14 15 16 17 18	6455617310211	117 116 127 133 136 154 156 147 164 174 156 160	5537630338888	115 125 127 137 144 146 156 156 158 172 160 166	16 23 18 27 17 29 51 19 10 13 11 7 4	119 124 128 132 142 147 151 154 157 162 162 162 165
aGroupSerum alkaline phosphatase concentrationsIMinus 2 or 3 standard deviationsIIPlus 2 or 3 standard deviationsIIIWithin ± standard deviations						

I . Barton and a second statements of the second
the boys in the other two groups, if gain in weight is considered indicative of rate of maturation (see Figure 37).

After 10 years the weights of boys in Groups I and II fluctuated together above or below the means of weight of the boys with average serum alkaline phosphatase concentration.

The boys with average concentrations of serum alkaline phosphatase made more regular increments in weight from year to year than the boys with serum alkaline phosphatase concentration of extreme values (see Table 70).

From 6 through 11 years the girls with highest serum alkaline phosphatase were heavier than the girls with lowest serum concentrations. After 11 years the girls with the lowest concentrations tended to be the heaviest.

The girls from 6 to 10 or 11 years with the highest concentrations (Group II) appeared to gain weight at a faster rate than the girls with the lowest concentrations (Group I) to the time that the girls in Group II attained the maximum concentrations. Afterwards, the girls in Group I gained weight more rapidly than Group II. By the sixteenth year both groups weighed about the same. The girls and boys with average serum alkaline phosphatase concentrations made regular yearly increments in height and weight throughout the age range.

Fig.37 Mean weights of Iowa children classified according to serum alkaline phosphatase concentration

-271-

-272-

-

Table 70

Mean Weights of Iowa Children Classified According to Serum Alkaline Phosphatase Concentrations

Groupsa	<u> </u>		I	I	I	II
Age yr.	No.	Kg.	No.	Kg.	No.	Kg.
		1	Воув			
6 7 8 9 10 11 12 13 14 15 16 17 18	3363648521311	23. 23. 23. 23. 23. 23. 23. 23. 23. 23.	566 754 981 781 1	24.4 25.6 29.1 334.5 345.4 547.1 28.1 53.4 547.1 53.1 53.1	12 19 29 29 29 18 19 10 10 57	22.3 24.7 28.7 31.6 34.1 39.3 40.3 34.2 39.3 48.5 50.7 61.0
		9	Girls			
6 7 8 9 10 11 12 13 14 15 16 17 18	6455617310211	20.6 20.0 27.3 30.5 44.6 55.0 64.4 47.6 55.1	55376303338888	207826732578776 2283543395.78776 335443395.78776	16 23 18 27 17 29 19 19 13 11 7 4	22.8 24.0 27.0 27.0 340.4 47.0 558.1 558.1 5571.3
^a Grou	ıp Ser	um alkali	ne phosp	hatase com	ncentrat	ions

I II III

And the second s

rum alkaline phosphatase concentrations Minus 2 or 3 standard deviations Plus 2 or 3 standard deviations Within ± standard deviations

P Change

The trends of the relationship between the level of serum alkaline phosphatase and the developmental levels of the three groups and for both sexes were similar to those observed for weights (see Table 71).

Nutrient intake. In Table 72 are presented the mean food energy, protein, calcium, iron, vitamin A and ascorbic acid content of the diets of the girls and boys in the lowest, highest and average serum concentration of alkaline phosphatase groups. The relationship between the level of serum alkaline phosphatase and the mean daily intakes of the various nutrients exhibited no particular trend. Bessey and Lowry (1946) found no significant changes in the phosphatase levels of two subjects that could be attributed to fasting, a high protein meal or a high fat meal.

<u>Concentrations of the various blood constituents</u>. The boys from 10 through 14 years had serum ascorbic acid concentrations that followed the direction of the three groups of serum alkaline phosphatase. That is, the boys of these ages with the highest concentrations in alkaline phosphatase had high serum ascorbic acid concentration; low phosphatase had lowe serum ascorbic acid concentrations. At the other ages the boys in the three groups showed no consistent relationship between the concentrations of serum alkaline

-273-

Table	e 71
-------	------

Mean Developmental Levels of Iowa Children Classified According to Serum Alkaline Phosphatase Concentrations

Groups ^a	I		I	I	I	II
Age yr.	No.	D.L. ^b	No.	D.L. ^b	No.	D.L. ^b
			оув			
6 7 9 10 11 12 13 14 15 16 17 18	376 7648 521 311	56 60 77 93 96 119 117 140 129 172 176 161 154	5663549813811	60 61 82 99 97 125 146 134 160 193 148 161	12 19 25 24 18 19 14 10 57	51 66 78 88 97 112 133 134 156 158 182 167
		g	irls			
6 7 8 9 10 11 12 13 14 15 16 17 18	6455617310211	44 60 73 83 125 145 131 148 164 134 148	553763 <u>0</u> 3338888	43 71 75 97 103 123 122 127 137 130 158 150 149	16 23 18 27 17 29 51 19 13 11 7 4	53 63 71 102 113 123 131 149 168 150 142
^a Grou I II III		um alkalir Minus 2 c Plus 2 or	r 3 stan 3 stan	hatase cor ndard devi dard devia d deviatio	ations tions	
b _{Deve}	lopmenta	l levels c	of Wetze	l's Grid.		

·.....

Age yrs.	No.	Groups ^a	Age mo.	Food energy cal.	Protein gm.	Calcium ^{mg} .	Iron mg.	Vit. A value I.U.	Ascorbic acid ^m g.
				Bo	<u>y8</u>				
6	3	I	82	2476	70	1163	9	4123	66
	5	II	76	2325	78	1341	10	4843	96
	12	III	79	2246	68	1087	10	6813	75
7	3	I	93	2098	69	1176	9	6559	70
	6	II	90	2099	67	1074	9	5164	54
	19	III	89	2062	64	1015	10	5660	66
8	6	I	101	2197	70	1108	10	5570	79
	6	II	101	1967	62	913	9	5730	60
	25	III	101	2231	71	1146	10	6751	76
9	3	I	114	2532	81	1394	11	7742	80
	3	II	116	2472	77	1127	12	5911	62
	29	III	113	2359	73	1072	11	8862	84

Table 72						
Mean Daily Food Energy and Nutrient Value of Diets of Iowa Children Classified						
According to Serum Alkaline Phosphatase Concentrations						

a Group	0			
Group	Serum	aikaline	pnospnatase	concentrations

- Minus 2 or 3 standard deviations Plus 2 or 3 standard deviations Within ± 1 standard deviations
- II II III

-275-

.

Table 72 (Cont'd)

م بد بعلم می د.

Age yrs.	No.	Groups	Age mo.	Food energy cal.	Protein gm.	Calcium mg.	Iron ^m g.	Vit. A value I.U.	Ascorbic acid mg.
10	6	I	127	2392	77	1011	11	6762	70
	5	II	127	2564	82	1048	12	8126	81
	24	III	125	2414	75	1077	11	8743	72
11	4	I	138	2974	93	1026	14	5974	80
	4	II	140	2494	76	1222	11	6152	88
	18	III	137	2557	81	1182	11	6031	79
12	8	I	148	2525	83	1017	13	6661	98
	9	II	148	3078	96	1260	14	9654	96
	50	III	148	2741	86	1172	13	8193	81
13	5	I	162	2986	87	1133	13	6884	81
	2	II	159	3484	101	1398	15	16204	179
	19	III	161	2841	89	1251	13	8815	82
14	2	I	174	3125	98	1170	16	8718	87
	1	II	172	3806	112	1630	16	18707	111
	14	III	174	2872	83	1084	12	7380	88
15	1	I	186	3679	104	1580	13	5506	60
	3	II	185	3626	100	1207	17	12627	109
	10	III	186	2917	90	1239	13	7430	81
16	3	I	199	3348	103	1571	16	17808	136
	2	II	194	3463	94	1004	15	3940	75
	10	III	197	3299	95	1397	14	9048	119

-276-

Table	72 ((Cont'd))
-------	------	----------	---

and the second

100

Age yrs.	No.	Groups	Age mo.	Food energy cal.	Protein gm.	Calcium ^{mg} .	Iron ^{mg} .	Vit. A value I.U.	Ascorbic acid ^m g.
17	1	I	204	3898	132	2422	16	7367	77
	1	II	204	3440	114	1742	16	6726	126
	4	III	208	3510	104	1539	14	5764	66
18	1	I	219	3066	88	1211	13	6725	75
	1	II	224	2814	86	779	12	7501	32
	7	III	222	3425	111	1273	16	10084	91
				<u>G</u> :	irls				
6	6	I	78	1807	53	729	9	3711	53
	5	II	76	1871	58	803	9	9477	74
	16	III	78	1959	62	1087	9	6455	66
7	4	I	88	2090	56	807	8	3246	92
	5	II	9 0	1953	63	945	9	6228	52
	23	III	89	1986	62	920	9	6177	71
8	5	I	102	2182	68	1083	9	6496	79
	3	II	99	2129	63	936	9	5667	67
	18	III	101	2045	68	1090	9	7798	82
9	5	I	115	2412	73	1031	11	7041	89
	7	II	113	2379	73	1022	12	8432	87
	27	III	114	2301	71	1015	10	7405	80
10	6	I	125	2409	77	1030	11	6924	102
	6	II	126	2340	73	1102	11	11571	81
	17	III	126	2228	70	989	11	7953	84

-277-

Age yrs.	No.	Groups	Age mo.	Food energy cal.	Protein gm.	Calcium mg.	Iron ^{mg} .	Vit. A value I.U.	Ascorbic acid mg.
11	1	I	141	2616	75	1113	11	13765	110
	3	II	136	2081	60	934	8	4044	60
	29	III	137	2276	72	1024	10	6319	72
12	7	I	151	25 10	74	922	15	8750	92
	10	II	148	2547	79	1083	12	9276	69
	51	III	148	2562	80	1098	12	8058	81
13	3	I	161	2153	64	959	9	4369	68
	3	II	163	1953	59	756	10	7722	40
	19	III	161	2418	71	910	11	6050	74
14	1	I	177	2191	64	608	13	3304	85
	3	II	173	2052	65	797	10	5607	96
	10	III	173	2444	79	1117	12	8115	76
15	0 2 13	I II III	185 186	3034 2687	89 79	 869 944	13 12	4296 7740	107 81
16	2	I	198	2196	70	938	9	5123	89
	2	II	195	1862	55	579	10	8888	72
	11	III	198	2156	68	815	10	4557	68
17	1	I	208	2909	81	1080	15	15911	75
	2	II	206	1922	63	1036	9	4926	92
	7	III	210	1980	63	701	10	6655	73

Table 72 (Cont'd)

المرتبعية والمعارية

-278-

÷,

A States

Age yrs.	No.	Groups	Age mo.	Food energy cal.	Protein gm.	Calcium mg.	Iron ^m g.	Vit. A value I.U.	Ascorbic acid mg.
18	1	I	217	2088	65	900	10	6533	43
	2	II	219	1961	62	824	10	4458	125
	4	III	222	2698	86	973	12	8345	91

·. •

Table 72 (Cont'd)

والمراجع والجوار والمراجع

-279-

war - ward in the second states

phosphatase and serum ascorbic acid. When girls with extreme phosphatase levels were omitted, the decrease of ascorbic acid concentrations with ages from 6 to 15 years occurred in a fairly steady manner. For the other two groups the trend was evident, but fluctuated (see Table 73).

During the ages 10 to 14 years the boys and the girls, except the girls in Group II, had ascorbic acid intakes above the allowances or within 10 milligrams of the allowances. Yet they had serum ascorbic acid concentrations that decreased to 0.4 milligram per cent. At this time serum alkaline phosphatase concentrations of the boys were rising, and of the girls were descending. It appeared that the boys were building osteoid tissue and the girls were accumulating soft tissue; in both growth processes ascorbic acid has important functional roles.

The mean concentration of serum carotenoids for both the boys and girls in the three groups fluctuated throughout the age range (see Table 74). The girls and boys with average serum alkaline phosphatase (Group III) exhibited less fluctuation than did the other two groups. The concentrations of the serum carotenoids of boys in the three groups decreased to a minimum at 15 years. This low concentration appeared one to three years after the group had

-280-

Table	73
-------	----

Mean Serum Ascorbic Acid Concentrations of Iowa Children Classified According to Level of Serum Alkaline Phosphatase Concentrations

Groupsa	1		I	1	I	II
Age yr.	No.	Mg.	No.	Mg.	No.	Mg.
		1	Boys			
6 7 8 9 10 11 12 13 14 15 16 17 18	3363648521311	1.060.800.901.150.710.710.770.610.400.520.821.000.28	566 354 921 3211	1.21 1.08 0.68 0.95 0.93 1.22 0.88 1.10 0.68 0.38 0.16 0.94 0.19	13 17 29 29 16 70 10 58	0.76 0.81 0.89 1.07 0.88 0.88 0.88 0.68 0.58 0.55 0.55 0.55 0.55
		9	<u> Jirls</u>			
6 7 8 9 10 11 12 13 14 15 16 17 18	6455617310211	.97 1.14 0.71 0.96 1.12 1.64 0.78 0.51 0.41 0.58 0.28	5537630332222	1.31 1.02 0.90 1.15 0.68 0.67 0.92 0.30 1.14 0.31 1.45 1.68	13 27 26 30 59 130 74	1.02 1.04 1.02 0.98 1.12 0.68 0.73 0.55 0.55 0.48 0.77 1.00 0.78
^a Grou I	p Ser	um alkali Minus 2 (ne phosp or 3 sta	bhatase con Indard devi	ncentrat lations	ions

I II III Minus 2 or 3 standard deviations Plus 2 or 3 standard deviations Within <u>+</u> 1 standard deviations

Groups ^a]		I	:I]	II		
Age yr.	No.	Mog.	No.	Mog.	No.	Mcg.		
			Boys					
6 7 8 9 10 11 12 13 14 15 16 17 18	376 76484 21311	67 118 111 114 93 122 105 78 98 44 78 52 68	4653538213211	114 134 125 98 131 136 152 93 48 50 128	16 235 19904 1985 8	112 123 116 110 130 112 109 105 87 84 92 109 96		
			<u>Girls</u>					
6 7 8 9 10 11 12 13 14 15 16 17 18	5455617310111	92 94 112 102 120 110 90 85 58 146 86 91	5537630338888	167 94 111 139 114 76 108 64 111 132 75 140 182	14 22 17 26 16 31 45 19 13 11 7 4	145 134 108 136 108 98 90 93 94 90 119 125		
a GroupSerum alkaline phosphatase concentrationsIMinus 2 or 3 standard deviationsIIPlus 2 or 3 standard deviationsIIIWithin ± 1 standard deviations								

Mean Serum Carotenoid Concentrations of Iowa Children Classified According to Serum Alkaline Phosphatase Concentrations

Table 74

وهدين دوري بين من منتشدين وري بين reached the maximum concentration of serum alkaline phosphatase. The girls displayed the same trend but to a less extent. The lowest carotenoid value of the girls of the three classifications with respect to serum alkaline phosphatase appeared from two to four years after the maximum concentration of serum alkaline phosphatase had been reached by the group.

The hemoglobin concentrations for both sexes and for Groups I and II showed no particularly outstanding differences from 6 to 14 years. From 14 to 18 the boys in Group I had higher concentrations than Group II. The order was reversed for the girls.

Summary

1. The girls and the boys in a sample of Iowa children had serum alkaline phosphatase concentration that attained the maximum concentrations at 11 and 13 years, respectively.

2. The boys and the girls with low serum alkaline phosphatase (Group I) showed no peak value at puberty. The girls and boys with the highest serum alkaline phosphatase concentration (Group II) reached an extremely high peak at 11 and 14 years, respectively. The children with average phosphatase concentrations reached their maximum concentration a year earlier than Group II. 3. Except for the girls with the lowest serum alkaline phosphatase, there was no difference in the relationship between the mean concentration of serum alkaline phosphatase and height was practically the same for the other two groups of girls and for the three groups of boys.

4. The relationship between the serum alkaline phosphatase concentrations and weight appeared to be different before and after 11 or 12 years of age. Before 11 or 12 years the children with the lowest serum alkaline phosphatase concentration tended to weigh less than the children with the highest serum alkaline phosphatase. After 11 years, at each age, the weights of the boys with the highest and lowest concentrations tended to deviate in the same direction from the weights of the boys with average concentrations.

5. No apparent relationship was exhibited between concentration of serum alkaline phosphatase and the various nutrient intakes, as shown by the comparison of the mean nutrient intake for the three groups of boys and of girls.

6. Regardless of classification with reference to serum alkaline phosphatase, the mean serum ascorbic acid concentrations decreased with age to low concentrations at about two to four years after the maximum mean serum alkaline phosphatase had been attained by the group. The boys

-284-

with the highest serum alkaline phosphatase concentrations reached the lowest ascorbic acid levels later than the boys with the lowest serum phosphatase concentrations.

7. Regardless of the classification with respect to serum alkaline phosphatase concentration the serum carotenoid concentration decreased with age to a minimum concentration at 15 years for the boys and 13 to 14 years for the girls. In each group the depressions in the mean serum carotenoid concentration followed the maximum mean concentration of serum alkaline phosphatase.

8. No outstanding relationship existed between serum alkaline phosphatase concentration and hemoglobin concentration of the blood for either boys or girls in Groups I and II.

Hemoglobin Concentrations in the Blood of Iowa Children

Hemoglobin concentration in the blood has been widely used as a measure of nutritional status. Its validity in this respect has not been established, partly because it is known to be influenced by many factors and its variability within the limits of normal health is wide. Such factors as age, sex, menstruation, season, geographic location, racial differences, diurnal variation, excitement or fear, gravity and exercise may influence the hemoglobin concentration. Moreover, the results may vary somewhat with the method used for the determination. Nevertheless the hemoglobin concentration may be expected to reflect nutritional status, because the synthesis of this blood constituent by the body involves the use of various amino acids, minerals and vitamins. The globin portion of the molecule contains all the essential amino acids and some of the non-essential amino acids (Block and Bolling, 1945).

The inorganic constituent of hemoglobin is iron. Copper is needed for normal erythropoeisis. It is not essentially a part of the molecule, but is associated with the cytochrome oxidase activity which functions in the hematopoietic activity (Schultze, 1947). Riboflavin may assist in the arrangement of the amino acids in the globin part of the molecule (Cartwright, 1947). Pyridoxine, vitamin $B_{1,2}$ and folic acid may be associated with metabolism of the amino acids and thus also be associated with the synthesis of hemoglobin.

Investigators differ on the concentrations of hemoglobin to consider as standards for healthy children at different ages and in both sexes. Wintrobe (1946) made a

-286-

series of suggestions which were higher than the values reported by Macy (1946) on a group of children judged to be in excellent health. Many data on hemoglobin concentration are available. Possibly because of the diversity of methods, lack of information about the nutritional or health status of the children, or the peculiarities of the sample of children, these data have not resulted in standards.

<u>Mean hemoglobin concentration in the blood of a total</u> sample of Iowa children

The hemoglobin concentrations in the blood of Iowa boys and girls were determined by two different methods. During the first year of the study, the only blood constituent determined was the hemoglobin concentration (Ebersole, 1949). The acid hematin technique was used in this determination (Hawk <u>et al.</u>, 1947). In the second and third year of the study a battery of tests was added to the measurements of nutritional status. Among these micromethods for blood analysis was an oxyhemoglobin procedure (Bessey and Lowry, 1945) for the determination of the hemoglobin concentrations.

The children studied in the first year attended the independent and consolidated school with grades one to

-287-

twelve. These children lived in small villages or in open country. In this phase of the study these children will be called "rural" girls and boys. In the second and third year the children attended schools that were located in cities and small towns. These children will be called "urban" boys and girls.

In Figure 38 are presented the mean hemoglobin concentration of each age-sex group of the rural and urban boys and girls. The means for each age-sex group of the rural children were lower than those found for the urban boys and girls. Since a different method was applied in assessing the hemoglobin concentration, the difference between the two groups cannot be ascribed to place of living. Yet, if method of analysis accounted for the difference, the same difference might have been expected throughout the age groups. The difference in hemoglobin concentration of the two groups of boys and girls were considerably greater before 12 years for the girls and 15 years for the boys than after these ages.

In Table 75 are presented the mean daily intakes of the nutrients that are usually considered to be involved in hemoglobin formation of the two groups of Iowa children. It may be noted that the difference in the mean intake of the two groups was not large enough to account for the

20

-288-

Fig. 38 Mean hemoglobin concentrations in blood of lowa children

			Rur	al			Urban				
Age yr.	No.	Pro- tein (gm.)	Iron (mg.)	Ribo- flavin (mg.)	Niacin (mg.)	No.	Pro- tein (gm.)	Iron (mg.)	Ribo- flavin (mg.)	Niacin (mg.)	
					Boys						
67890112345678 10112345678	1564 19 222 17 38 74 17 14 6	61 66 73 73 71 76 77 83 93 93 94 102 102	9 10 11 12 12 14 15 16 16 16	1.7 1.9 2.0 1.0 1.0 2.5 5.6 6	11 12 13 13 13 15 17 18 17 18 18	208 371 326 556 14 16 11	69 66 70 73 76 88 90 87 93 96 110 102	10 9 10 11 13 13 13 15 15	1.98 1.0.0.0.34 2.2.2.2.4.5.06	11 11 13 14 13 15 16 15 16 18	

Mean Daily Content of Some Nutrients in Diets of Rural and Urban Children of Iowa

Table 75

A. Basia

a better and

-290-

Table 75 (Cont'd)

			Rur	al			Urban				
Age yr.	No.	Pro- tein (gm.)	Iron (mg.)	Ribo- flavin (mg.)	Niacin (mg.)	No.	Pro- tein (gm.)	Iron (mg.)	Ribo- flavin (mg.)	Niacin (mg.)	
					<u>Girls</u>						
678901123456 101123456 178	236 152 1326 19331 155 155	62 58 567 667 80 72 718 72 78 72	9 9 11 11 10 12 12 12 12 12 12 12 12 13	1.6 1.6 1.6 1.7 1.9 2.0 2.0 1.9 1.7 1.6 1.7	10 9 12 12 14 14 13 12 14 14	25 31 37 38 4 25 15 15 10 7	60 1923 98 95 8673 6 8675 8673 6 8675 86736	9 9 10 11 10 12 13 10 11	1.7 1.6 2.0 2.0 1.8 2.0 1.7 2.0 1.9 1.6 1.5 1.7	10 10 11 13 13 11 14 12 13 15 12 11 13.4	

bala dashi manishakilan manyan dipang Tibaal

-291-

difference in the hemoglobin concentrations of the two groups. In fact, there was a slight tendency for the rural children to have higher intakes than the urban children of the various nutrients.

Since there was this difference between the hemoglobin concentration of these two groups of boys and girls, the data for each group will be discussed separately. The mean, standard deviation, standard error of the mean and the range for each age-sex group are presented in Tables 76 and 77.

The mean hemoglobin concentration in the blood of both groups of boys showed a slow, steady increase with age. The same increase may be noted for the girls to 13 years. At 13 years the mean hemoglobin concentration in the blood of the girls decrease sharply and remained approximately at the same level from 14 to 18 years.

The hemoglobin concentrations for the rural boys ranged from 9.0 to 19.3 gram per cent; for the urban boys 11.1 to 17.1 gram per cent; for the rural girls 6.7 to 17.5 gram per cent; for the urban girls 10.2 to 17.9 gram per cent. The hemoglobin concentrations of the rural children covered a wider range of values than those of the urban children.

-292-

Table 76

Mean Hemoglobin Concentrations in Blood of Rural Iowa Children

Age yr.	No.	Mean gm.	Standard deviation gm.	Standard error gm.	Range gm.
			Boys		
67890 10112 13145678	16 28 120 25 22 17 218 19 19 14 7	11.6 11.7 12.6 12.5 12.5 12.9 13.3 ^a 14.0 ^a 14.3 ^a 14.3 ^a 14.4	1.02 1.20 1.24 0.85 1.68 1.05 0.71 1.11 1.65 1.19 1.04 1.49 1.00	0.26 0.23 0.33 0.20 0.34 0.22 0.16 0.28 0.24 0.29 0.24 0.24 0.24	10.4 - 13.1 $9.7 - 14.4$ $10.8 - 15.9$ $11.0 - 15.1$ $10.5 - 19.3$ $9.0 - 13.9$ $11.5 - 13.8$ $11.1 - 15.0$ $9.0 - 16.5$ $12.3 - 16.3$ $11.6 - 15.9$ $10.7 - 16.1$ $13.0 - 15.7$
			<u>Girls</u>		
67890112345678 10112345678	23 16 18 21 23 10 23 20 10 5	12.0 12.1 12.3 12.3 12.3 12.3 12.9 12.9 12.9 12.9 12.9 12.9 12.9 12.9	0.88 1.35 2.23 1.76 1.03 1.06 1.71 1.07 0.97 1.17 0.97 1.25 1.20	0.18 0.35 0.54 0.37 0.18 0.22 0.21 0.21 0.24 0.21 0.21 0.31 0.54	10.3 - 13.8 7.8 - 12.9 7.0 - 15.4 6.7 - 16.9 9.8 - 14.6 10.8 - 14.5 11.0 - 17.5 10.9 - 15.6 9.5 - 14.1 10.3 - 16.3 11.1 - 15.0 11.0 - 16.2 11.1 - 14.3

^aSignificant at the 1 per cent level.

bSignificant at the 5 per cent level.

A contraction of the second
7

Mean Hemoglobin Concentrations in Blood of Urban Iowa Children

Age yr.	No.	Mean gm.	Standard deviation gm.	Standard error gm.	Range gm.
			Boys		
67890 1012 1345678 178	208 272 326 557 14 57 11 157	12.4 12.8 13.0 13.3 13.1 13.1 13.4 13.6 ^b 13.4 ^b 13.4 ^b 13.4 ^b 14.5 ^b 14.7 ^a 14.7 ^a	0.67 0.71 0.91 0.86 1.05 0.77 0.93 0.94 1.04 0.76 0.80 1.12 1.51	0.15 0.14 0.15 0.16 0.18 0.15 0.12 0.19 0.25 0.20 0.21 0.46 0.48	11.1 - 13.6 $11.3 - 14.7$ $11.4 - 16.2$ $11.4 - 14.4$ $11.3 - 15.1$ $11.2 - 14.4$ $11.6 - 17.1$ $11.8 - 15.9$ $12.1 - 15.5$ $13.7 - 15.9$ $13.0 - 15.6$ $13.1 - 16.2$ $12.8 - 17.1$
			Girls		
6789011234 1011234 15678	251 3232 3236 254 550 7	12.8 12.6 12.6 13.0 13.3 13.5 12.7 ^b 13.0 ^b 13.3 ^b 13.3 ^b 13.3 ^a	0.86 0.72 0.63 0.59 0.70 0.98 0.71 0.71 0.81 0.90 1.79 0.73 0.90	0.17 0.13 0.16 0.12 0.13 0.17 0.09 0.14 0.22 0.23 0.46 0.28 0.37	10.3 - 14.0 $11.6 - 14.2$ $11.1 - 13.8$ $11.0 - 14.9$ $11.5 - 14.0$ $10.5 - 14.9$ $11.7 - 14.7$ $11.2 - 14.1$ $11.7 - 14.5$ $10.5 - 14.0$ $10.2 - 17.9$ $12.2 - 14.7$ $11.2 - 13.4$

^aSignificant at the 1 per cent level.

^bSignificant at the 5 per cent level.

این د موجه وهمه می واید در د اور از میرد در ا

The sex differences were particularly noticeable from 14 to 18 years. In the rural group the difference between the two sexes at 12 years was significant at the 5 per cent level, but it was not significant at 13 years. It was again significant at 14 to 18 years. For the urban children significant sex differences appeared first at 13 years and continued to 18 years. Mack et al. (1941) found a consistent sex difference from 12 to 40 years in their observations on 2400 subjects in Pennsylvania. Clayton et al. (1953) observed a lower hemoglobin concentration among the girls of the 13 to 15 year old group than among the boys in the same age group. The Iowa data along with the findings on the children in the Northeast Region (Clayton et al., 1953) are presented in Table 78. The Iowa rural children had lower hemoglobin concentrations than did the children in the Northeast Region. Except for girls 13 to 15 years, the urban Iowa children had concentrations that were equal to those observed by Clayton and co-workers on the children in the Northeast Region. Abbott et al. (1946) did not observe sex differences in the hemoglobin concentrations of the Florida children. These children were under the age of 14 years, also they were poorly nourished.

To study some possible relationships between hemoglobin concentrations and nutrient intake, the regression

-295-

Table 78

Mean Hemoglobin Concentrations in the Blood of Children in Iowa and Other Places

Age groups	7-9	years	10-12	years	13-15	years	16-18	years		
Places	No.	Gm.	No.	Gm.	No.	Gm.	No.	Gm.		
Boys										
Iowa rural urban	59 96	12.2 13.0	68 126	12.4 13.3	58 55	13.5 13.8	37 31	14.2 14.8		
New York ^a	47	13.1	48	13.3	107	13.9	9	14.3		
Maine ^a			8	13.3	252	13.8	62	14.4		
Rhode Island	la				13	14.4	50	14.7		
West Virgini	laa		at) as)		-		532	15.5		
				<u>Girls</u>						
Iowa rural urban	53 88	12.0 12.8	70 124	12.7 13.4	65 54	12.5 12.8	41 32	12.8 13.1		
New York ^a	51	13.0	55	13.6	115	13.6	10	13.0		
Maine ^a			11	13.2	316	13.2	64	13.2		
Rhode Island	la				44	13.4	155	12.9		
West Virgini	laa	••••		••			387	13.6		

aClayton et al. (1953).

of hemoglobin on age was calculated separately for each sex and for each of the two groups. The regression was significantly different between the groups of boys and girls, also between the two sexes (see Figure 39). These regressions showed that the hemoglobin concentration in the blood of Iowa children increased significantly with each monthly increase in age.

Since the differences between groups and sexes were significant, the data for each sex and group could not be pooled. Consequently, the relationships between hemoglobin concentrations and intakes of various nutrients were calculated separately. These computations were made on the data for the boys only.

The correlation coefficients between hemoglobin concentrations and the mean daily intakes of certain nutrients are shown below:

	Rural Boys	<u>Urban</u>
Riboflavin Iron Niacin Protein Age	0.21ª 0.26ª 0.29ª 0.33ª 0.74ª	0.33 ^a 0.21 ^a 0.25 ^a 0.37 ^a
No. of boys	237	328

^aSignificant at 1 per cent level.

Fig. 39 Regressions of hemoglobin concentrations in blood for two groups of lowa children

-298-

All these correlation coefficients were highly significant. Babcock obtained the following coefficients between hemoglobin and dietary protein and iron:

State	Iron	Protein
Maine Massachusetts	0.141 ^b 0.245 ^b	0.188 ^b 0.272 ^b
New Jersey	-0.171ª	-0.056
New York Rhode Island	0.213 ^a 0.269 ^a	0.177 a 0.311 a
West Virginia	0.323ª	0.289 a

^aSignificant at 1 per cent level. ^bSignificant at 5 per cent level.

Babcock and co-workers included all the subjects in one state and disregarded age and sex.

When the multiple regression of hemoglobin on the variables riboflavin, niacin, protein, iron and age was computed, it was noted that the addition of the other independent variables, niacin, riboflavin, protein and iron did not appreciably improve the estimate of hemoglobin with age.

The simple linear relationship between hemoglobin and age was r = 0.74 for the rural boys and 0.37 for the urban boys. The multiple R was 0.87 for the rural boys and 0.40 for the urban boys.

Study of the three groups of Iowa rural and urban children classified according to hemoglobin concentration in the blood

In order to study the characteristics of the children who had high, low or average hemoglobin concentrations, each age-sex group was divided into three groups. Group I consisted of all the children who were in the second and third standard deviation below the mean; Group II those in the second and third standard deviation above the mean; Group III those within plus or minus one standard deviation.

In Tables 79 and 80 are presented the mean hemoglobin concentrations for each age-sex group. Except for the 7 and 8 year old rural girls with the low hemoglobin concentration (Group I) the means of no group fell below 10 gram per cent.

<u>Physical status</u>. The urban boys with low hemoglobin concentration tended to be shorter and to weigh less than the urban boys with high concentrations. The rural boys and all groups of girls exhibited no definite relationship between physical measurement and hemoglobin concentration.

<u>Nutrient intake</u>. No consistent relation was observed between hemoglobin concentration in the blood of Iowa children and the various nutrient intakes of their diets.

-300-

		1	I	I	II
No.	Gm.	No.	Gm.	No.	Gm.
		Boys			
0 71 2 2 72 74 4 1 71	10.1 10.8 11.3 10.7 10.3 11.6 11.4 10.9 12.6 11.6 12.0 13.0	N4 N N N N T T T T T N T O	13.1 13.8 15.1 14.3 16.8 13.3 13.7 14.4 15.6 15.8 16.1 16.1	14 21 16 21 16 15 10 16 10 16 10 6	11.4 11.6 12.3 12.6 12.3 12.2 12.3 12.3 12.3 13.3 14.9 14.9 14.7
		<u>Girls</u>			
10327342321421	11.2 9.2 8.3 10.7 10.6 11.0 10.9 11.4 10.7 10.3 11.6 11.3 11.1	1024442123411	13.8 14.7 14.8 14.3 14.2 16.5 15.6 14.7 14.7 14.4 16.2 14.3	12 13 14 13 24 52 15 19 14 13 19 14 13 3	12.5 12.0 11.8 12.5 12.5 13.4 12.0 13.2 13.0 12.2 12.8 12.9 12.4
	No. 0 31 22 32 34 4 1 31	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	No. Gm. No. Boys Boys 0 2 3 10.1 4 1 10.8 2 2 11.3 2 2 10.7 2 3 10.3 3 2 10.7 2 3 10.3 3 2 11.6 4 3 11.4 4 4 10.9 4 4 12.6 4 1 11.6 2 3 12.0 1 1 13.0 0 0 11.2 1 1 13.0 0 2 8.3 2 7 10.7 4 3 10.6 4 4 11.0 4 2 10.9 2 3 11.4 1 2 10.7 2 <	No. Gm. No. Gm. Boys 3 10.1 4 13.8 1 10.8 2 15.1 2 11.3 2 14.3 2 10.7 2 16.8 3 10.3 3 13.3 2 10.7 2 16.8 3 10.3 3 13.3 2 11.6 4 13.7 3 11.4 4 14.4 4 10.9 4 15.6 4 12.6 4 15.8 1 11.6 2 16.1 3 12.0 1 16.1 1 13.0 0 2 8.3 2 14.7 7 10.7 4 14.8 3 10.6 4 14.3 4 11.0 4 14.2 2 10.9 2 16.5	No. Gm. No. Gm. No. Boys 13.1 14 13.8 21 0 2 13.1 14 3 10.1 4 13.8 21 1 10.8 2 15.1 11 2 11.3 2 14.3 16 2 10.7 2 16.8 21 3 10.3 3 13.3 16 2 11.6 4 13.7 15 3 11.4 4 14.4 10 4 10.9 4 15.6 16 4 12.6 4 15.8 10 1 11.6 2 16.1 16 3 12.0 1 16.1 10 1 13.0 0 6 Girls 2 14.7 14 7 10.7 4 14.8 13

Mean Hemoglobin Concentration in Blood of Rural Iowa Children Classified According to Hemoglobin Concentrations

Table 79

⁸Group - Hemoglobin concentration in blood I Minus 2 or 3 standard deviations II Plus 2 or 3 standard deviations III Within ± 1 standard deviation.

Groupsa]		I	I]	III		
Age yr.	No.	Gm.	No.	Gm.	No.	Gm.		
			Boys					
6 7 8 9 10 11 12 13 14 15 16 17 18	34 2 58 4 0 31 24 0 2	11.3 11.7 11.6 11.8 11.7 11.8 12.2 12.1 12.1 13.7 13.6 	3346837543313	13.3 14.2 15.0 14.1 15.1 15.1 15.7 15.6 16.9	14 21 31 20 198 17 29866	12.5 12.8 13.3 13.3 13.4 13.4 13.0 14.0 14.9		
			<u>Girls</u>					
6 7 8 9 10 11 12 13 14 15 16 17 18	3331547222321	10.8 11.7 11.3 11.9 11.9 11.5 12.3 11.5 11.9 11.3 10.6 12.3 11.2	11 50 66 12 4 22 1 20	13.4 14.0 13.6 14.9 14.5 13.8 14.5 13.8 14.5 13.8 14.5 13.6 14.5 13.6	11 22 13 20 17 24 49 10 11 11 66	12.7 12.6 12.9 12.9 13.4 12.9 13.4 12.9 13.6 13.2 13.6 13.2 12.9		

Mean Hemoglobin Concentrations in Blood of Urban Iowa Children Classified According to Hemoglobin Concentrations

Table 80

^aGroup - Hemoglobin concentrations in blood I Minus 2 or 3 standard deviations II Plus 2 or 3 standard deviations III Within ± 1 standard deviation. In Tables 81, 82, 83 and 84 are presented the mean intakes of each group of boys and girls.

<u>Concentration of various blood constituents</u>. Analysis of other blood constituents (serum ascorbic acid, serum carotenoid and serum alkaline phosphatase concentrations) in relation to hemoglobin concentration in the blood was made only on the urban children.

The mean serum ascorbic acid concentrations for each age-sex group classified according to hemoglobin concentration decreased with age so that the minima were reached at 15 to 16 years for boys and 13 to 15 for girls (see Table 85). The urban boys and girls with low hemoglobin concentration tended to have the lowest serum ascorbic acid concentrations. The hemoglobin concentration of the other groups of boys and girls showed less consistent relationship with serum ascorbic acid concentration.

The mean serum carotenoid concentrations for each agesex group are presented in Table 86. The girls with the low hemoglobin concentration tended to have lower serum carotenoid concentrations than the other two groups.

The mean serum alkaline phosphatase concentration for each age-sex group classified according to hemoglobin concentration are presented in Table 87. The boys from 8 through 13 years with the lowest hemoglobin concentration

-303-

Table 81

Age	No.	Group ^a	Hemo- globin (gm.)	Food energy (cal.)	Protein (gm.)	Animal protein (gm.)	Other sources protein (gm.)	Iron (mg.)	Ribo- flavin (mg.)	Niacin (mg.)
					Boys	-				
6	0 2 13	I II III	13.1 11.5	2030 2111	63 61	38 35	25 26	11 9	1.8 1.6	11 11 11
7	3	I	10.1	2396	68	34	34	12	1.8	13
	4	II	13.8	2025	59	34	25	9	1.4	11
	19	III	11.6	2307	67	38	29	10	2.0	12
8	1	I	10.8	2766	78	42	36	13	2.0	13
	2	II	15.1	2667	83	55	28	11	2.6	13
	11	III	12.3	2349	70	41	29	11	2.1	12
9	2	I	11.3	2454	74	41	33	11	1.9	11
	2	II	14.3	2576	73	38	35	12	1.7	13
	15	III	12.5	2522	72	39	33	12	2.0	13

Mean Daily Food Energy and Nutrient Value of Diets of Rural Iowa Children Classified According to Hemoglobin Concentrations in Blood

^a Group -	- Hemoglobin concentration in blood
I	Minus 2 or 3 standard deviations
II	Plus 2 or 3 standard deviations
III	Within ± 1 standard deviation.

-304-

A. Statistics

_

المراجعة فيتحاج والمتعادية المتراجع

Table 81 (Cont'd)

Age	No.	Group ^a	Hemo- globin (gm.)	Food energy (cal.)	Protein (gm.)	Animal protein (gm.)	Other sources protein (gm.)	Iron (mg.)	Ribo- flavin (mg.)	Niacin (mg.)
10	2	I	10.7	2717	78	45	33	12	2.3	16
	2	II	16.8	2335	70	38	33	11	1.8	14
	21	III	12.3	2370	71	40	31	11	1.9	12
11	3	I	10.3	2587	80	50	30	12	2.4	13
	3	II	13.3	2581	74	34	40	13	2.0	14
	16	III	12.2	2695	76	40	36	11	2.0	13
12	2	I	11.6	4091	119	67	52	18	3.1	21
	4	II	13.7	2821	76	33	43	12	2.0	14
	15	III	12.3	2406	72	36	36	12	1.9	12
13	3	I	11.4	2621	79	40	39	14	1.9	15
	4	II	14.4	3043	93	52	40	13	2.3	14
	10	III	12.8	2962	80	41	39	14	1.8	15
14	4	I	10.9	2969	86	45	41	15	1.7	17
	4	II	15.6	3614	111	69	42	17	2.4	20
	15	III	13.4	2950	90	50	40	14	2.3	16
15	4	I	12.6	3644	98	53	44	19	3.2	18
	4	II	15.8	3190	94	56	38	14	3.1	17
	10	III	14.3	3300	93	47	46	17	2.0	18
16	1	I	11.6	4366	140	101	39	19	2.8	20
	2	II	16.1	3586	96	40	55	16	1.7	17
	14	III	14.1	3458	101	<i>5</i> 9	42	16	2.6	17

-305-

in the trace is the state

يستدونو والأسا

Table 81 (Cont'd)

Age	No.	Group ^a	Hemo- globin (gm.)	Food energy (cal.)	Protein (gm.)	Animal protein (gm.)	Other sources protein (gm.)	Iron (mg.)	Ribo- flavin (mg.)	Niacin (mg.)
17	3 1 10	I II III	12.0 16.1 14.9	3635 1843 3431	102 76 105	48 49 62	54 28 43	19 8 16	2.3 2.0 2.7	18 10 19
18	1 0 5	I II III	13.0 15.3	3839 3637	90 105	41 63	49 42	18 15	2.1 2.6	17 18

กรากการสาขางสมบัตร เพราะ 200 การสาขางการสาขางการสาขางการสาขางการสาขางการสาขางการสาขางการสาขางการสาขางการการการ

-306-

1

Table 82

Mean Daily Food Energy and	Nutrient Value	of Diets of Urban	Iowa Children
Classified Accordin	g to Hemoglobin	Concentrations in	Blood

Age	No.	Group ^a	Hemo- globin (gm.)	Food energy (cal.)	Protein (gm.)	Animal protein (gm.)	Other sources protein (gm.)	Iron (mg.)	Ribo- flavin (mg.)	Niacin (mg.)
					Boys					
6	3	I	11.3	2176	71	44	2 8	10	2.0	11
	3	II	13.3	2440	71	45	28	9	1.9	10
	14	III	12.5	2162	68	42	26	10	1.9	11
7	4	I	11.7	1903	59	36	23	8	1.6	9
	3	II	14.2	2338	78	51	25	11	2.2	13
	21	III	12.8	2074	65	37	28	9	1.8	10
8	2	I	11.6	2129	62	36	26	9	1.6	10
	4	II	15.0	2301	74	48	26	10	2.2	12
	31	III	12.8	2171	70	44	26	10	2.0	11
9	5	I	11.8	2300	67	37	29	10	1.8	12
	6	II	14.3	2384	72	44	28	10	2.1	13
	20	III	13.3	2363	75	43	32	11	2.0	12

^aGroup - Hemoglobin concentrations in blood I Minus 2 or 3 standard deviations II Plus 2 or 3 standard deviations III Within ± 1 standard deviation.

المربعة والمراد

-307-

Table 82 (Cont'd)

Age	No.	Group ^a	Hemo- globin (gm.)	Food energy (cal.)	Protein (gm.)	Animal protein (gm.)	Other sources protein (gm.)	Iron (mg.)	Ribo- flavin (mg.)	Niacin (mg.)
10	8	I	11.7	257 4	79	45	34	12	2.1	14
	8	II	14.6	2380	76	46	30	11	2.0	14
	19	III	13.1	2393	75	43	32	11	2.0	13
11	4	I	11.8	2194	70	44	26	9	2.0	11
	3	II	14.1	3087	97	57	40	13	2.3	20
	19	III	13.3	2616	81	49	32	12	2.0	13
12	10	I	12.2	2983	92	51	40	14	2.3	17
	7	II	15.1	3105	98	58	40	14	2.7	16
	48	III	13.4	2549	85	49	36	13	2.2	14
13	3	I	12.1	3087	92	52	40	14	2.2	15
	5	II	15.0	2903	91	54	37	14	2.7	16
	17	III	13.4	2874	90	53	37	13	2.3	16
14	1	I	12.1	2395	75	48	27	11	1.5	14
	4	II	15.1	2669	82	50	32	13	1.9	14
	11	III	13.0	3120	90	49	41	13	2.4	16
15	2	I	13.7	3629	104	55	49	17	2.8	17
	3	II	15.7	3221	89	54	35	13	2.6	14
	9	III	14.3	3115	92	58	34	14	2.2	15
16	4	I	13.6	3193	94	55	39	15	2.3	17
	3	II	15.6	2997	87	50	37	14	2.4	14
	7	III	15.0	3381	101	60	41	15	2.6	17

-308-

جارته يستعادين والمحا

Table	82 (Cont	'd)
-------	------	------	-----

Age	No.	Group ^a	Hemo- globin (gm.)	Food energy (cal.)	Protein (gm.)	Animal protein (gm.)	Other sources protein (gm.)	Iron (mg.)	Ribo- flavin (mg.)	Niacin (mg.)
17	0 1 5	I II III	16.2 14.1	2159 3843	77 117	53 75	24 42	11 11	1.8 3.2	 12 12
18	2 36	I II III	13.0 16.9 14.9	2903 3840 3184	80 128 97	41 79 57	40 49 40	13 19 14	1.5 2.6 2.9	15 22 18

-309-

ورياري والمتحديد والمتحد والمتحد والمتحد

a of a stream of

Table 83

Age	No.	Group ^a	Hemo- globin (gm.)	Food energy (cal.)	Protein (gm.)	Animal protein (gm.)	Other sources protein (gm.)	Iron (mg.)	Ribo- flavin (mg.)	Niacin (mg.)
					<u>Girl</u>	.8				
6	3	I	10.7	2259	66	38	28	10	1.9	11
	1	II	13.8	1136	38	25	13	5	1.1	7
	19	III	12.1	2031	62	37	25	9	1.6	10
7	3 0 13	I II III	9.2 12.0	2179 1994	65 57	38 35	27 22	11 9	1.9 1.6	13 10
8	2	I	8.3	2130	61	36	25	9	1.8	10
	2	II	14.7	1684	50	31	19	8	1.4	8
	11	III	12.3	1980	58	33	25	9	1.6	9
9	1	I	6.7	2862	78	42	36	13	1.8	13
	4	II	14.8	1863	59	33	26	9	1.4	10
	17	III	12.2	2145	68	35	33	11	1.6	13

والمراجع والمراجع والمتعارية والمراجع والمتعارية والمحاجب والمحاجب والمحاجب والمحاجة والمحاجر

Mean Daily Food Energy and Nutrient Value of Diets of Rural Iowa Children Classified According to Hemoglobin Concentrations in Blood

^aGroup - Hemoglobin concentrations in blood I Minus 2 or 3 standard deviations II Plus 2 or 3 standard deviations III Within ± 1 standard deviation. -310-

س ، مُستقاده .

Table 83 (Cont'd)

Age	No.	Group ^a	Hemo- globin (gm.)	Food energy (cal.)	Protein (gm.)	Animal protein (gm.)	Other sources protein (gm.)	Iron (mg.)	Ribo- flavin (mg.)	Niacin (mg.)
10	3	I	10.6	2242	66	36	29	11	1.9	11
	4	II	14.3	2185	61	29	32	12	1.4	11
	24	III	12.2	2309	64	32	32	11	1.7	12
11	4	I	11.0	2037	62	33	29	11	1.8	12
	4	II	14.2	1897	52	25	27	8	1.3	10
	15	III	12.5	2423	73	38	35	11	2.2	13
12	2	I	10.9	2686	76	40	37	12	1.8	16
	2	II	16.5	2878	90	52	38	14	2.1	16
	12	III	13.4	2479	79	41	38	11	2.0	13
13	3	I	11.4	2763	82	44	39	11	2.2	12
	1	II	15.6	3028	101	67	35	12	3.0	13
	15	III	13.0	2 6 12	79	41	38	13	1.9	14
14	2	I	10.7	2507	77	44	33	12	1.9	12
	2	II	14.1	3072	83	38	45	15	1.9	15
	19	III	13.0	2530	73	40	33	12	1.9	13
15	1	I	10.3	2763	75	49	26	14	2.2	12
	3	II	14.7	2304	75	45	30	11	1.9	13
	19	III	12.2	2525	71	37	34	12	1.7	13
16	4	I	11.6	2839	73	34	39	14	1.8	13
	4	II	14.4	2227	75	48	27	11	1.8	13
	13	III	12.8	2394	68	36	32	11	1.7	12

-311-

and the second
1.15. 85

Table 83 (Cont'd)

Age	No.	Group ^a	Hemo- globin (gm.)	Food energy (cal.)	Protein (gm.)	Animal protein (gm.)	Other sources protein (gm.)	Iron (mg.)	Ribo- flavin (mg.)	Niacin
17	2	I	11.3	2406	74	41	33	12	1.9	12
	1	II	16.2	2137	68	49	20	10	2.1	13
	12	III	13.0	2640	80	45	35	12	1.7	14
18	1	I	11.1	2607	73	32	41	13	1.4	14
	1	II	14.3	2738	80	40	27	15	1.5	17
	3	III	12.4	2790	68	30	38	12	1.3	13

-312-

ومعارضها والأورب والمراجع

Table 84	
----------	--

Mean Daily Food Energy and Nutrient Value of Diets of Urban Iowa Children Classified According to Hemoglobin Concentrations in Blood

Age	No.	Group ^a	Hemo- globin (gm.)	Food energy (cal.)	Protein (gm.)	Animal protein (gm.)	Other sources protein (gm.)	Iron (mg.)	Ribo- flavin (mg.)	Niacin (mg.)
					Girl	8				
6	3	I	10.8	1743	52	27	25	8	1.3	10
	3	II	13.6	2010	67	44	23	9	1.9	11
	19	III	12.7	1945	61	37	24	9	1.7	10
7	3	I	11.7	2003	63	40	23	9	1.7	10
	6	II	14.0	1864	59	38	21	9	1.7	11
	22	III	12.7	1990	61	36	25	9	1.7	11
8	3	I	11.3	2025	68	42	26	8	2.0	11
	5	II	13.6	2066	69	43	27	10	1.9	11
	12	III	12.6	2107	68	44	24	10	2.1	11
9	9	I	11.9	2249	66	36	30	10	1.7	12
	6	II	14.0	2323	71	41	30	10	1.2	13
	22	III	12.9	2362	74	45	29	10	2.1	13

^aGroup - Hemoglobin concentration in blood I Minus 2 or 3 standard deviations II Plus 2 or 3 standard deviations III Within ± 1 standard deviation. -313-

3

a series and

Table 84 (Cont'd)

المرجعة والمرجع

Age	No.	Group ^a	Hemo- globin (gm.)	Food energy (cal.)	Protein (gm.)	Animal protein (gm.)	Other sources protein (gm.)	Iron (mg.)	Ribo- flavin (mg.)	Niacin (mg.)
10	5	I	11.9	2249	69	39	30	11	1.6	12
	6	II	13.9	2214	77	49	28	11	2.3	14
	17	III	12.9	2329	72	42	30	11	2.0	12
11	4	I	11.5	2438	76	43	33	11	1.9	14
	6	II	14.6	1943	63	39	25	10	1.6	11
	24	III	13.3	2268	70	40	30	11	1.8	11
12	7	I	12.3	2178	71	42	29	9	1.8	12
	12	II	14.5	2670	81	47	34	13	2.0	14
	43	III	13.4	2639	82	46	36	12	2.0	14
13	2	I	11.5	2441	74	41	34	12	1.9	12
	4	II	14.0	2758	82	43	38	12	1.9	16
	19	III	12.6	2228	66	34	32	10	1.6	12
14	2	I	11.9	2620	76	47	28	13	2.8	12
	2	II	14.5	2586	88	55	33	13	2.2	13
	10	III	12.9	2238	72	42	30	11	1.9	13
15	2	I	11.3	2755	74	49	24	13	1.9	16
	2	II	14.0	2551	77	42	35	12	1.7	15
	11	III	13.2	2799	82	45	37	13	1.9	15
16	3	I	10.6	2488	78	54	25	11	2.0	15
	1	II	17.9	1727	45	26	19	8	1.8	9
	11	III	13.6	2058	66	41	25	10	1.5	11

-314-

A Contraction

Table 84 (C	Cont ¹ d)
-------------	----------------------

Age	No.	Group ^a	Hemo- globin (gm.)	Food energy (cal.)	Protein (gm.)	Animal protein (gm.)	Other sources protein (gm.)	Iron (Eg.)	Ribo- flavin (mg.)	Niacin (mg.)
17	226	I II III	12.3 14.6 13.2	2456 2374 1896	74 74 56	39 45 31	35 29 25	12 11 9	2.0 2.0 1.3	12 11 10
18	1 0 6	I II III	11.2 12.9	2870 2309	95 73	68 43	27 30	13 11	2.2 1.6	17 13

-315-

الدرأعالمة تجاوروه

Ta	ble	85
----	-----	----

Mean Serum Ascorbic Acid Concentrations of Urban Iowa Children Classified According to Hemoglobin Concentration in Blood

Groupsa	1]	I	III		
	No.	Mg.	No.	Mg.	No.	Mg.	
			Boys				
6 7 9 10 11 12 13 14 15 16 17 18	34 2 58 20 31 24 0 2	0.68 0.65 0.50 0.61 0.73 0.94 0.68 0.67 0.44 0.79 0.34	>>++++	0.81 0.89 0.74 0.96 0.80 0.91 0.52 1.31 0.43 0.37 0.51 0.81	14 19 31 18 207 17 29866	0.98 0.86 0.90 1.20 0.83 0.88 0.74 0.72 0.63 0.53 0.53 0.53 0.53	
			<u> Girls</u>				
6 7 8 9 10 11 12 13 14 15 16 17 18	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.03 1.10 0.68 0.70 0.45 0.80 0.72 0.27 0.27 0.27 0.27 0.27 0.27 0.2	₩05000024 22120	0.51 1.07 1.37 1.05 1.11 0.54 0.35 1.47 0.45 0.38 1.27	18 22 122 122 124 19 11 16 6	1.02 1.03 0.87 1.01 1.12 0.73 0.72 0.54 0.54 0.52 0.52 0.71 0.97 0.90	
^a Grou T	ps - Hen	oglobin d		tions in dard davi			

Groups - Hemoglobin concentrations in blood I Minus 2 or 3 standard deviations II Plus 2 or 3 standard deviations III Within ± 1 standard deviation.

and and

Mean Serum Carotenoid Concentration of Urban Iowa Children Classified According to Hemoglobin Concentrations in Blood

	I	I	I]	II
No.	Mcg.	No.	Mcg.	No.	Mcg.
		Boys			
332 584 031 24 02	104 107 116 95 127 140 100 90 88 47 109 145	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	100 124 119 85 128 94 97 82 52 82 154 82	14 19 28 20 19 19 17 29 766	108 128 116 121 121 116 108 108 91 83 67 98 85
		<u>Girls</u>			
๛๛๛๛๛๛๛๛๛๛ ๛๛๛๛๛๛๛๛๛๛๛๛	86 105 80 101 105 132 90 86 112 74 72 111 165	₩₩₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	168 135 126 115 130 84 93 111 113 89 127	19 23 27 246 19 110 66	144 121 120 116 134 106 101 85 87 101 98 120 132
	No. 332584 10312402	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	No. Mcg. No. Boys Boys 3 104 3 3 107 3 2 116 4 5 95 6 8 127 8 4 140 3 10 100 6 3 90 5 1 88 4 2 47 2 4 109 2 0 1 2 145 2 Girls	No. Mcg. No. Mcg. Boys Boys 100 3 100 3 124 2 116 4 119 5 95 6 85 8 127 8 128 4 140 3 86 10 100 6 94 3 90 5 97 1 88 4 82 2 4 100 2 82 2 4 109 2 82 0 $$ 1 154 2 145 2 82 0 $$ 1 154 2 82 6 0 $$ 1 154 2 82 6 82 0 $$ 1 154 2 82 6 0 $$ 1 154 2 82 6 0 $$ <th< td=""><td>No. Mcg. No. Mcg. No. Boys 100 14 3 100 14 3 100 14 3 100 14 3 100 14 3 100 14 3 124 19 28 5 95 6 85 20 8 128 18 18 14 140 3 86 19 10 100 6 94 49 3 90 5 97 17 1 88 4 82 122 2 97 17 1 88 4 82 12 2 9 4 109 2 82 7 0 $$ 1 154 6 2 145 2 82 6 Girls</td></th<>	No. Mcg. No. Mcg. No. Boys 100 14 3 100 14 3 100 14 3 100 14 3 100 14 3 100 14 3 124 19 28 5 95 6 85 20 8 128 18 18 14 140 3 86 19 10 100 6 94 49 3 90 5 97 17 1 88 4 82 122 2 97 17 1 88 4 82 12 2 9 4 109 2 82 7 0 $$ 1 154 6 2 145 2 82 6 Girls

⁸Groups - Hemoglobin concentrations in blood I Minus 2 or 3 standard deviations II Plus 2 or 3 standard deviations III Within ± 1 standard deviation.

ومدادهما

الموريد. المحجم المحمد المحم

Table 87

Mean Serum Alkaline Phosphatase Concentration of Urban Iowa Children Classified According to Hemoglobin Concentration in Blood

Groups ^a	I		II		IIJ	
	No.	NP.U.b	No.	NP.U. ^b	No.	NP.U.
			Boys			
6 7 8 9 10 11 12 13 14 15 16 17 18	3325830312402	4.83 5.56 4.524 5.26 3.788 5.788 5.788 5.788 5.788 5.788 5.788 5.80 8.661 4.81 3.42	NN468N744NN14	4.20 5.154 5.96 5.96 5.94 5.92 5.92 5.92 5.92 5.92 5.92 5.92 5.92	14 221 219 248 129 866	4.94 4.94 5.92 5.88 6.15 5.11 3.07 3.07
			<u>Oirls</u>			
6 7 8 9 10 11 12 13 14 15 16 17 18	3339547222321	5.09 3.78 5.59 4.72 5.70 5.70 5.20 5.20 2.73 1.99 1.99 1.99 1.22		4.68 5.38 5.97 5.91 4.91 3.11 5.91 4.55 3.11 1.94 1.94	19 21 13 22 17 23 44 19 11 11 68	5.41 5.40 5.50 5.52 5.225 5.225 5.225 5.225 2.51 2.51

^a Groups	- Hemoglobin concentration in blood
I	Minus 2 or 3 standard deviations
II	Plus 2 or 3 standard deviations
III	Within ± 1 standard deviation

^bNitrophenol units.

tended to the lowest serum alkaline phosphatase concentration, but from 14 to 18 they had the highest phosphatase concentrations. The girls exhibited no relationship between hemoglobin concentrations and serum alkaline phosphatase concentrations.

Summary

1. Both the rural and urban boys demonstrated a slow steady increase in hemoglobin concentration with age. Hemoglobin concentrations for the rural and urban girls from 6 to 13 years increased with age, but decreased noticeably between 13 and 14 years. This lower concentration was maintained to 18 years.

2. There were no definite sex differences from 6 to 12 years in either group. Significant sex differences appeared at 12 years for the rural children, not at 13 years, and again at 14 years. The urban children showed sex differences from 13 to 18 years.

3. The regression of hemoglobin on age was significantly different for boys and for girls, also for the rural children and for the urban children.

4. For boys the mean daily intakes of protein, niacin, riboflavin and iron were significantly correlated with hemoglobin but age was more highly correlated with hemoglobin than were the dietary constituents.

-319-

5. There was no outstanding relationship between hemoglobin concentration and height, weight and dietary intakes of the various nutrients.

6. The girls and boys with low hemoglobin concentrations tended to have lower serum ascorbic and serum carotenoid concentrations than the children with high or average hemoglobin concentrations.

7. The boys with low hemoglobin concentrations from 6 to 13 years had lower serum alkaline phosphatase concentrations than did the boys with high hemoglobin concentrations. After 13 years they had the highest serum alkaline phosphatase concentrations. The other groups of boys and girls exhibited no relationship between the two blood constituents.

INTERRELATIONSHIPS AMONG MEASUREMENTS OF NUTRITIONAL STATUS AND NUTRIENT INTAKE

In this study a systematic analysis has been made of certain body measurements and certain blood constituents in relation to each other and to the mean daily intake of nutrients. An attempt has been made to observe relationships that exist among height, weight and developmental level and concentrations of four blood constituents; namely, serum ascorbic acid, serum carotenoid, serum alkaline phosphatase concentrations, and hemoglobin concentrations in blood, and nutrient intake.

The height-weight data in this study may be used as a standard of reference for the heights and weights of other Iowa children. The Iowa children in this study were selected randomly from a large population of school children. It can be assumed that the children in this study were in a normal state of health for Iowa school children, since they were attending school regularly. Moreover, these data are in close agreement with those obtained in previous studies on the measurements of Iowa children. Because of the nature of the sampling, the body measurements in this study should serve as a more reliable basis

-321-

of comparison than the data in the earlier studies, which represented the measurements of special groups.

The following discussion deals primarily with body measurements in relation to biochemical and dietary observations, and secondly, with biochemical measurements in relation to body measurements and dietary observations.

Interrelationships among Body Measurements and Nutrient Intakes or Blood Constituents of Iowa Children

Each age-sex group was divided into three smaller groups according to mean and standard deviation of the agesex group. Among the different categories of body measurements there were groups of children who were classified as tallest, heaviest or in highest developmental levels; and other groups who were classified as shortest, lightest or in lowest developmental levels; and others who were designated as average in height, in weight or in developmental level. The dietary and biochemical observations for each grouping were investigated by comparing the means of the groups.

-322-

The boys who were tallest, heaviest and with highest developmental level (Group II) tended to have higher intakes of calories, protein, calcium, iron, vitamin C, thiamine, riboflavin and niacin than the boys who were shortest, lightest and with lowest developmental level (Group I).

For the girls the relationships between the various body measurements and nutrients in the diet were less distinct than those noted for the boys (see Table 88). Throughout the school years the relationship with nutrient intake was more evident in height than in weight or developmental level. In other words, the tallest girls tended to have greater intakes of most nutrients than did the shortest girls. For girls below the teen ages weight was related to nutrient intake. In these age groups the heaviest girls, and girls with the highest developmental level had intakes that were higher than the girls of lightest or lowest developmental level. After 13 years the girls who were heaviest and of highest developmental level actually had lower mean intakes of most of the nutrients than the girls who were lightest and of lowest developmental level.

The higher nutrient intake of the boys and younger girls may in part be responsible for the greater height, weight and developmental level. Yet, other conditions must be considered before such relationships can be

-323-

Table (38
Table (58

Ages When Food	Energy Value	and Nutrient	Intake of	Diets of	Iowa Children in
Grou	p II of Vari	ous Body Meas	urements Ex	xceeded G	roup I

	Body	Boys	Girls
Nutrient	measure- ment	Year of age	Year of age
Food	Height	6,8,9,11,12,13,14,15,16,17	6,8,10,11,12,13,14,15,17
energy	Weight	6,7,8,9,11,12,13,14,15,16,17,18	6,7,8,10,11,13
value	D.L. ^a	6,7,8,9,11,12,13,14	6,7,9,10,11,13,18
Protein	Height	7,8,9,11,12,13,14,15,16,17	6,7,8,9,10,11,12,13,14,15,16,17,18
	Weight	6,7,8,9,11,12,13,14,15,16,17,18	6,7,8,10,11,13
	D.L.	6,7,9,11,12,13,14,15,16,17,18	6,7,8,10,11,13
Calcium	Height	8,9,11,12,13,14,15,17,18	6,7,8,9,10,11,12,16,17,18
	Weight	6,7,11,12,13,14,15,16,17	6,7,8,10,11,13
	D.L.	6,7,8,9,10,11,12,13,14,16,18	6,7,8,10,11,13
Iron	Height Weight D.L.	6,8,9,10,11,12,13,14,15,17 6,7,8,9,11,12,13,14,15,17,18	6,8,9,10,11,13,14,17 6,7,8,9,10,11,18
Vitamin C	Height	7,8,9,10,11,12,13,14,18	6,7,8,10,11,12,13,16,17,18
	Weight	6,7,8,9,10,11,12,13,16,17,18	6,7,8,9,10,12,13,14,17,18
	D.L.	6,7,8,9,10,11,12,15,16,18	6,7,8,10,12,13,15,17
Thiamine	Height	6,7,8,9,10,11,12,13,14,15,17,18	6,7,8,9,10,11,12,13,14,17,18
	Weight	6,7,8,9,11,12,13,14,15,17,18	6,7,8,10,11,13,14
	D.L.	6,7,8,11,12,13,14,15,16,17,18	6,7,8,9,10,11

⁸Developmental level according to Wetzel Grid.

-324-

ir 🖾

المالية بالمركبة تشتينا وليارجان

Table 88 (cont'd)

nt^{e a}tra vinante

م. المعق 2 m

	Body	Boys	G1r1s
Nutrient	measure- t ment	Year of age	Year of age
Ribo- flavin	Height Weight D.L.	6,7,8,9,11,12,13,14,15,16,17,18 6,7,8,10,11,12,13,14,15,16,17 6,7,11,12,13,14,15	6,7,8,9,10,11,12,13,14,15,16,17,18 6,7,8,10,11,13,14 6,7,8,9,10,13,14
Niacin	Height Weight D.L.	6,7,8,9,11,12,13,17 6,7,8,9,11,12,13,14,16,17 6,7,8,9,11,12,13,14,16,17	6,8,10,11,12,13,14,16,17,18 6,7,8,10,11,13,14 6,7,8,10,11,13,17,18

established. The children who were tallest, heaviest and of highest developmental level may have had genetic patterns that induced the greater height, weight and developmental level. Also they may have had more favorable environmental conditions. A question may be raised, as to whether the category of greatest physical development is the most desirable.

The relationship between developmental level and food intakes was similar to the relationship with weight, although height and weight were considered in determining developmental level.

In Table 89 are presented the ages when the nutrient intake of the various groups of boys and girls followed the same order as the classification of the different body measurements. That is, the boys and girls who were tallest, heaviest and of highest developmental level (Group II) had the highest values for nutrient intake; those who were shortest, lightest and of lowest developmental level (Group I) had the lowest values for nutrient intake; and those with average body measurements had values for the nutrient intake intermediate to those of the other two groups (Group III).

Boys tended to have nutrient intakes that followed the classification of the three body measurements more often before 13 years than afterwards.

Table 89

Ages When Food Energy Value and Nutrient Intake of Diets of Iowa Children Followed the Same Direction as Groups II, III and I of Various Body Measurements

	Body	Boys	Girls
Nutrient	measure- ment	Year of age	Year of age
Food	Height	8,9,12,13,14,17	8,10,11,14,17
energy	Weight	6,7,8,12,13,14	8,10,13
value	D.L. ^a	6,7,9,12,13,14	8,10,13
Protein	Height	8,9,11,12,13,14,16,17	6,8,10,11,16,17
	Weight	6,7,8,9,11,12,13,14	6,7,8,10,13
	D.L.	6,7,9,11,12,13,14	6,7,8,10
Calcium	Height	9,12,13,14,16,17	6,7,8,9,10,11,12,16,18
	Weight	7,12,13,16	6,7,8,9,10,11,13
	D.L.	6,9,12,13,15,16	6,7,8,10,11
Iron	Height Weight D.L.	6,8,9,12,13,14,17 6,7,8,12,13	8,9,10,14,16 10
Vitamin C	Height	8,10,12,16	6,8,9,10,12,16,18
	Weight	7,8,11,12,18	8,9,11,12,13,14
	D.L.	7,10,11,12,18	9,10,12,13,14

⁸Developmental level according to Wetzel Grid.

nan na marana na mana a na manana na manana na manana da manana d

-327-

THE REPORT OF STREET, STRE

	Body	Boys	Girls
Nutrlent	ment	Year of age	Year of age
Thiamine	Height Weight D.L.	9,10,11,12,13 6,7,8,11,12,13,14 6,7,8,11,12,13,14,15	8,9,10,11,17 6,7,8,13 6,7,8,11
Ribo- flavin	Height Weight D.L.	8,9,10,11,12,13,14,15,16,17 7,12,13,14,15,16 6,7,10,11,12,13,14,15	6,7,9,10,11,14,16,18 6,8,10,13 6,7,8,10
Niacin	Height Weight D.L.	8,9,11,13,17 6,8,11,12 6,7,8,11,12	8,10,11,13,14,18 8,10,11,13 8,10,13

a kita manananana

Table 89 (Cont'd)

When the girls were classified according to height their mean daily nutrient intakes tended to rate high, intermediate or low in the order of their height classification. For the girls under 10 years the values of their dietary intakes of the various nutrients followed the classification of weight or developmental level more often than occurred above 10 years.

The children who were heaviest and tallest tended to have higher protein and riboflavin intakes than those who were lightest and shortest.

The data in this analysis strongly indicated that body measurements of boys and younger girls were related to nutrient intake. This study has revealed relationships between physical measurements and nutrient intake among children of a normal population. The validity of the relationships <u>per se</u> is subject to questions which arise from small numbers in the extreme groups. A study designed to investigate these suggested relationships would require wider sampling of children in the extreme groupings.

With the average group the relationship between developmental level and nutrient intake was greater than that in the other two groups as was shown by the regression of developmental level on various nutrient intakes. The relationship between developmental level and protein

-329-

and Andreas and Antonio and Antonio and Antonio Antonio and Antonio and Antonio and Antonio and Antonio and Antonio was not so evident when the age factor was partially removed by computing the regressions at each age for the two sexes, regardless of high, low or intermediate classification.

The boys and younger girls with average or greater than average physical development had diets in which the mean daily intakes tended to conform to the allowances except in calcium. The boys and girls, except at the teen ages, who were shortest, lightest and developing slowly had nutrient intakes less than the allowances at more ages than had the boys and girls in the other two groups. The teen-age girls who were tallest, heaviest and developing rapidly and those who were average in height, weight and developmental level had dietary intakes that were generally below the allowances (see Table 90).

It appears from these data that physical developmental may vary with the dietary practices of children. Therefore, the needs of the children at various physiological ages should be studied. The lack of relationships between developmental level and nutrient intake of teen-age girls suggests the need of further study of the actual needs of these girls.

-330-

	Bedy	Group I		Group I	I
Matrient	measure- ments	Boys	Øirle	Boys	Girls
food energy value	Height Veight D.L.	9,12-18 8,12-18 8,12-18	8,10,11,13-17 8,10,11,13,14 8,10,11,13,14,17	18 16-18 15,16,17	13, 15, 1 11, 12, 1 11, 12, 1
Protein	Height Veight D.L. ^a	13,17 8,13,16 -18 8,11,13,14,16,17	8,10,11,13-17 6-8,10,11,13,14,16,17 7,8,10,11,13,14,16	17 17,18	13-16 14-18 14-18
Galcium	Height Veight D.L.ª	8-18 6,7,10,12-18 6,7,9-18	6-18 6-17 6-17	10,14,15,18 9,10,13-17 13-17	9–18 9–12,14 9–18
Iron	Height Veight D.L. [®]	13,17 8,11-17	6,8-18 6,7,8,10,11,13-18	18 16,17,18	12-18 11-18
Vitanin C	Height Veight D.L.ª	12-14,18 11-14,16-18 12-14,16-18	12,13,15,17 12-14,17,18 12,13,14,17,18	13,14,17,18 13,14,17 13,14,17	13-15 11,16 16,18
Thismine	Height Veight D.L. ^R	9-11,13,17,18 8,9,11-14,16-18 7,8,13-17	8-11,13-18 6-8,10,11,13-15 6,8-11,13,14	10 10,16-18 16,17,18	13-17 9-18 12-18
Riboflavi n	Height Veight D. L. [®]	13,17 12-14,16,17 12-14,16,18	7 ,11,13-18 11 ,13-15 13	18	14-18 13-18 13,15-1
Flacin	Height Veight D.L.ª	13,17 8,11,13,16-18 8,13,16,17	8 ,11,13-18 8 ,11,13,1 4 8 ,11,13,14,1 7	16 16,17 16,17	13-18 14-18

Ages When Nood Energy Value and Mutrient Content of the Diets of Low Classified According to Various Body Measurements Ware Less Than the

Table 90

"Developmental level as obtained from the Wetzel Grid

) ایر ا

Table 90

Group III Group II 0irla Boys Girls Boys Oirle. 8,10,11,13-17 18 13, 15, 16 12-18 10-14, 16-18 8,10,11,13,14 16-18 11, 12, 14, 16-18 13-18 10,11,13,14,16 13,14,15,18 11, 12, 14, 16, 17 8,10,11,13,14,17 15,16,17 10,11,13,14,16,18 8,10,11,13-17 13-16 14-18 6-8,10,11,13,14,16,17 17 14-18 13-18 ----14-18 17,18 13-18 7,8,10,11,13,14,16 6-18 10,14,15,18 9-18 9-16,18 9-18 6,7,9-18 6-17 9-12,14-18 10-16,18 9,10,13-17 6-17 13-17 9-18 10-16-18 6,7-9-18 6,8-18 18 12-18 10-18 ----6,7,8,10,11,13-18 16,17,18 11-18 11,14 11,14-18 13,14,17,18 13-15 15,18 12,13,15,17 -12-14, 17, 18 13,14,17 11,16 18 13 13,14,17 18 13 12,13,14,17,18 16,18 10-14 8-11,13-18 10 13-17 10-18 10,16-18 6-8,10,11,13-15 9-18 10,11,16,18 10,11,13-18 12-18 6,8-11,13,14 16,17,18 11,13 - - -7,11,13-18 14-18 13,15,16,18 - --18 13-18 17 14-18 11,13-15 13 13,15-18 17 15-18 16 15 8,11,13-18 13-18 13-18 16,17 8,11,13,14 14-18 15 8,14,15 8,11,13,14,17 16,17

lue and Mutrient Centent of the Diete of Leva Children Warious Body Measurements Were Less Than the Allowances

Wetzel Grid

•

In all three categories of the various body measurements, the serum ascorbic acid and serum carotenoids decreased with age. In Table 87 are presented the ages when the lowest concentrations of serum ascorbic acid and serum carotenoid occurred. If the maximal mean concentration in serum alkaline concentration marks the beginning of puberty for the group, then the minima in the other blood constituents in the next four years may indicate that the blood constituents are being utilized at a rapid rate in the body processes which accompany the pubertal changes.

Further evidence that the body utilizes these blood constituents at a rapid rate by growth was the precipitous drop in the serum ascorbic acid and serum carotenoid concentrations made by the boys and girls who were the tallest, heaviest and developing most rapidly. Furthermore, in the groups of average height, weight or developmental level, the decrease of the blood constituents with age was less marked at periods of rapid growth. In the slowly developing children these changes were less noticeable than in the average or rapidly developing children. The changes in blood levels with age could not be explained by low dietary intakes. The mean concentration of serum alkaline phosphatase were about the same at the various age-sex groups whether classified according to height, weight ot developmental level. However, it appeared from the data

-332-

Table 91

Ages When Minimal Mean Concentrations of Serum Ascorbic Acid and Serum Carotenoid Occurred, also When the Maximal Mean Concentration of Serum Alkaline Phosphatase Occurred

	Serum ascorbic acid		Serum carotenoid		Serum alkaline phosphatase	
	boys	girls	boys	girls	роля	girls
Weight Heaviest Average Lightest	14 15 15	14 15 15	15 15 15	13 13 12	12 13 14	11 12 12
Height Tallest Average Shortest	14 15 15	13 15 16	15 15 13	16 15 16	12 14 13	11 11 12
Developmental level Highest Average Lowest	14 15 13	13 13 15	15 15 13	13 13 12	12 13 13	10 11 12

A ANTINE CONTRACTOR OF A CONTRACTOR

on the extreme groups that serum alkaline phosphatase was more related to height and developmental level than it was to weight.

Only two consistent relationships were noted between body measurements and hemoglobin concentration in the blood of boys and girls. The boys who were shortest, lightest and of lowest developmental level tended to have lower hemoglobin concentrations than the other two groups of boys. However, the girls who were tallest, heaviest and developing rapidly tended to have lower hemoglobin concentrations in the blood after 13 years than before 13 years. These observations may be a reflection of the poor intakes of protein, iron, riboflavin and niacin of the older girls.

From this study of the relationship of height, weight and developmental level with dietary intakes and blood constituents it may be concluded that the different rates of growth tend to be associated with nutrient intakes and concentrations of various blood constituents.

Interrelationships among the Various Blood Constituents of Iowa Children and Physical and Nutrient Intakes

The mean serum ascorbic acid, serum carotenoid, and serum alkaline phosphatase concentrations and hemoglobin

-334-

concentrations in the blood of rural and urban children for each age-sex groups were presented in Tables 52, 60, 67, 76 and 77.

These data show that the serum ascorbic acid and carotenoid concentrations decreased with age to the minima at 15 years for the boys in both blood constituents and 13 years in carotenoid concentration and 15 in ascorbic acid concentration for the girls. These low concentrations occurred after the age when the mean maximum concentration in serum alkaline phosphatase concentration had been attained (11 years for girls and 13 years for the girls).

The relationship between the various blood constituents and other measurements of nutritional status was most evident when each age-sex group was subdivided into groups with the highest, with the lowest and with the average concentrations.

From 6 to 13 years the boys and girls with the highest serum ascorbic concentration tended to be slightly taller than the boys and girls of corresponding ages with the lowest serum ascorbic acid concentrations. The boys from 6 to 12 with the highest serum carotenoid concentrations tended to be taller than the boys with low concentrations. There was no consistent relationship between weight and developmental level and the classification of the

-335-

مهمیند. دهمنا داد در دهمیمد از blood constituent.

For the children with highest and average serum alkaline phosphatase concentrations, within the year in which they made the greatest increase in height, they attained the highest mean serum alkaline phosphatase concentration. The significance of the level of serum alkaline phosphatase concentration in relation to physical development varies with age under consideration. For older children the higher levels may mean delayed maturation.

There was no relationship evident between the level of serum alkaline phosphatase concentration and the diets of the three groups of boys and girls. Neither was the hemoglobin concentration related to nutrient intake when means of children with high, low and intermediate concentrations were compared with their respective mean daily intakes.

The boys and the girls with highest or lowest serum concentrations of serum ascorbic acid and serum carotenoid did tend to reflect the dietary intakes.

The girls and boys who had highest serum concentrations of ascorbic acid and of carotenoids had diets with higher contents of protein, minerals and vitamins than had the children with the lowest concentrations of these two substances.

-336-

The lowered serum concentrations of ascorbic acid and carotenoids at certain ages during puberty cannot be wholly accounted for by the dietary intake. The children in the lowest concentration groups did not have intakes of ascorbic acid and carotenoids that would be expected to result to such low serum concentrations. Storvick and her co-workers (1947, 1950) observed that intakes of ascorbic acid equal to the recommended allowances did not support tissue saturation. In view of the findings of Storvick and her associates and of this study the need of these two nutrients during puberty should be reevaluated.

From the observations on the data of Iowa children a satisfactory serum concentration of serum ascorbic acid or serum carotenoids was not the same at all ages and in both sexes. Therefore, a single standard of serum ascorbic acid concentration and serum carotenoid concentration should not be used for all ages.

Of the four blood constituents, serum ascorbic acid and serum carotenoid concentration were more closely related to each other than any of the other blood constituents. The relationship of serum ascorbic acid and serum carotenoid concentrations can be expected within a living organism since in nature the two vitamins are often associated with each other, as in fruits and vegetables.

SUMMARY

Approximately 1200 boys and girls were chosen randomly to represent the Iowa children who attended various types of public schools. In the group were included urban elementary schools, small town elementary schools and junior and senior high schools, and consolidated and independent schools with grades one to twelve. A series of physical and biochemical measurements were made on these children to determine their nutritional status. A seven-day dietary record was obtained from each child.

The results of the study of nutrient intake, body measurements, and blood constituents have been summarized at the close of preceding sections. In brief, relationships between physical growth, nutrient intake and blood constituents were studied. In this analysis the children were subdivided into three groups based on their physical measurements and blood constituents:

The most outstanding results of the study were, as follows:

1. Boys had mean daily intakes of food energy and of nutrients which either exceeded or approached the allowances, except for calcium. Girls from 6 to 13 years had mean daily intakes of food energy and of nutrients which either

-338-

approached or exceeded dietary allowances of the National Research Council, except for calcium and iron. After 13 years of age the girls had intakes of protein, thiamine and riboflavin, in addition to calcium and iron, which were generally below the allowances. The values of the other nutrients fluctuated about the allowances.

2. The physical measurements showed that the children in this study made continuous, though irregular, yearly gains in height and in weight. Since the height and the weight data in this study were representative of a large population of reasonably well-nourished and healthy children, they may be used as a standard of reference for the heights and weights of other Iowa children. The measurements were similar to those made in other mass studies of Iowa school children living in specific communities.

3. Height, weight and developmental levels of boys throughout the school age and of girls from 6 to 13 years tended to be related to nutrient intake, as shown by the differences in the nutrient value of the diets of the highest and lowest groupings according to physical measurements.

4. The boys and the girls from 6 to 13 years, who were either the tallest, heaviest or developing rapidly or who were average in height, weight and developmental level had diets which exceeded or conformed to the allowances in nutritive value. The girls and boys who were shortest, lightest and developing slowly and the girls from 13 to 18 years who were tallest, heaviest and developing rapidly, usually had intakes less than the allowances. This analysis suggested that the allowances are more applicable to the intakes of Iowa children who were average or above in physical development than to those who were below average.

5. Serum ascorbic acid and serum carotenoid concentrations apparently reflected not only dietary intake, but also the rate at which the children were developing or growing. The serum concentrations of both blood constituents decreased with age to a low level at 13 to 15 years. The decrease was precipitous for the rapidly growing children; it was less marked for the average groups, and scarcely evident for the lowest. Regardless of classification the decrease was most evident at periods of rapid growth. For the boys the concentrations of serum carotenoids were negatively correlated with age and positively correlated with the vitamin A value of fruits and vegetables present in the diet. When the intake and age of the boys were considered together in a multiple regression, the relationship between intake, age and concentration was highly significant. These relationships were not tested for girls.

6. The changes in the mean serum concentrations of serum ascorbic acid or carotenoids from year to year through the school ages, suggested the need of a standard of

-339b-

reference at each year, rather than for school children in general.

7. This study did not reveal a relationship between dietary intake and concentration of serum alkaline phosphatase. Before puberty, boys and girls of the most advanced physical development tended to have higher serum alkaline phosphatase concentrations than the children in the lowest; the children of the average groupings tended to have intermediate values at these ages. After puberty the serum alkaline phosphatase concentrations of rapidly growing children and of average children declined toward the low concentrations, characteristics of adulthood, earlier than the slow growing children.

8. In the average groups according to various physical measurements the well-defined peak in the mean serum concentration of serum alkaline phosphatase preceded the marked depression in the serum concentrations of ascorbic acid or of carotenoids by one to two years. These changes did not occur in the lowest group.

9. Concentration of hemoglobin in the blood of Iowa boys was highly correlated with the mean daily intakes of protein, niacin, riboflavin and iron. Yet, among the boys age was more highly correlated with hemoglobin concentration in the bood than were these nutrients. The boys of lowest group of physical measurements tended to have lower hemoglobin concentrations than did the boys of the other two groups. Contrary to the boys, the girls from 13 to 18 years of the highest group in physical measurements had lower hemoglobin concentration than the other two groups.

This method of analyzing data used in the present investigation was exploratory. The results from these analyses suggest the need of further study of the nutritional status of children who are maturing at different rates. Angrage Argunation and a second and a second and Argunation and a second a

LITERATURE CITED

- Abbott, O. D., Townsend, Ruth O., French, R. B., Ahmann, C. F. 1946. Effectiveness of school lunch in improving the nutritional status of children. Fla. Agr. Exp. Sta. Bul. 426.
- Adamson, J. D., Jolliffe, N., Kruse, H. D., Lowry, O. H., Moore, P. E., Platt, B. S., Sebrell, W. H., Tice, J. W., Tisdall, F. F., Wilder, R. M., Zamicnik, P. C. 1945. Medical survey of nutrition in Newfoundland. Canad. Med. Assoc. J. 52:227.
- Ames, A. M. and Ningester, W. J. 1947. The relationship between ascorbic acid and phagocytic activity. Abstracts of Proceedings for the 47th General Meeting of the Society of American Bacteriologist, p. 53.
- Babcock, M. J., Bryan, A. H., Clayton, M. M., Foster, W. D., Lawless, J. J., Tucker, Ruth, Wertz, Anne W., Young, Charlotte M. 1952. Cooperative nutrition status studies in Northeast Region: II. Physical findings. Northeast Reg. Pub. No. 8. N. J. Agr. Exp. Sta. Bul. 763.
- Babcock, M. J., Clayton, Mary M., Foster, Walter D., Lojkin, Mary E., Tucker, Ruth E., VanLandingham, A. H., Young, Charlotte M. 1953. Cooperative nutritional status studies in Northeast Region: VI. Correlations. Northeast Reg. Pub. No. 13. W. Va. Agr. Exp. Sta. Bul. 361T.
- Baldwin, B. T., Wood, T. D., Woodbury, R. M. 1923. Heightweight-age table. New York. Am. Child Hlth. Assoc.
- Barbour, Helen Frances. 1948. Nutritional status of Iowa children: I. Number of erythrocytes, concentration of hemoglobin, and relative red cell volume as indices of evaluation. Unpublished M. S. Thesis. Ames, Iowa, Iowa State College Library.
- Beal, Virginia A., Burke, Bertha S., Stuart, Harold C. 1945. Nutrition studies of children living at home. I. Calory intakes on the basis of age from one through ten years. Am. J. Dis. Child 70:214.

and the second
Bessey, O. A. and Lowry, O. H. 1945. Biochemical methods in nutritional surveys. Am. J. Pub. Hlth. 35:941.

and a start of the
- Bessey, O. A., Lowry, O. H., Brock, M. J., Lopez, J. A. 1946. Determination of vitamin A and carotene in small quantities of blood serum. J. Biol. Chem. 166:177.
- Bessey, O. A., Lowry, O. H., Brock, M. J. 1946. A method for rapid determination of alkaline phosphatase with five cubic millimeters of serum. J. Biol. Chem. 164:321.
- Bessey, O. A. and Lowry, O. H. 1947. Nutritional assay of 1200 New York State school children. In Meals for Millions, pp. 167-169. New York State Joint Legislature Committee on Nutrition. Albany, New York.
- Bieri, J. G. and Follard, O. J. 1953. Efficient utilization of intravenus carotene by the rat. Fed. Proc. 12:409. Abs. 1344.
- Black, Richard J., and Bolling, Diana. 1945. The amino acid composition of proteins and foods. p. 300. Springfield, Ill. Charles C. Thomas.
- Bodansky, A. and Jaffe, H. C. 1934. Phosphatase studies. 3. Serum phosphatase diseases of the bone: interpretation and significance. Arch. Int. Med. 54:88.
- Bowes, A. deP. and Church, C. F. 1946. Food values of portions commonly used. 6th ed. Philadelphia, Pa. College Offset Press.
- Boyd, E. 1929. The experimental error inherent in measuring the growing human body. Am. J. Phys. Anthrop. 13:389.
- Cartwright, George E. 1947. Dietary factors concerned in erythropoiesis. Blood 2:111, 256.
- Clark, Leland C. and Beck, Elizabeth. 1950. Plasma "Alkaline" phosphatase activity: I. Normative data for growing children. J. of Ped. 36:335.
- Clayton, Mary M. 1944. A four-year study of the food habits and physical condition of grade school children in Newport, Maine. Me. Agr. Exp. Sta. Bul. 430.

Clayton, Mary M., Babcock, M. J., Foster, W. D., Stregevsky, S., Tucker, Ruth E., Wertz, Anne W., Williams, H. H. 1953. Cooperative nutritional status studies in Northeast Region: V. Blood findings. Northeast Reg. Pub. No. 14. Me. Agr. Exp. Sta. Bul. 516.

Deuel, J. Harry. 1950. Non-caloric functions of fat in the diet. J. Am. Diet. Assoc. 26:255.

Ebersole, Nancy Roberta. 1949. Nutritional status of Iowa children: II. Concentrations of hemoglobin in blood of children attending schools with and without school lunch program. Unpublished M. S. Thesis. Ames, Iowa, Iowa State College Library.

Eppright, Ercel S., Patton, Mary B., Marlott, Abby L., Hathaway, Millicent. 1952. Dietary study methods: V. Some problems in collecting dietary information about groups of children. J. Am. Diet. Assoc. 28:43.

Fincke, Margaret L. 1946. Nutritional status and food consumption of rural children in Oregon: III. In Quartermaster Corps Manual, Q M C, 17-9. Chicago, Ill., Quartermaster Food and Container Institute for the Armed Forces.

Gray, H. and Ayres, J. G. 1931. Growth of private school children. Chicago: University of Chicago Press.

Hamil, B. M., Reynolds, L., Poole, M. W., Macy, I. G. 1938. Am. J. Dis. Child. 56:561.

Harris, R. S., Weeks, Elizabeth, Kinde, Matthew. 1943. Effect of a supplementary food on the nutritive status of school children. J. Am. Diet. Assoc. 19:182.

- Harrison, Ann P., Roderuck, Charlotte, Lesher, Marjorie, Kaucher, Mildred, Moyer, Elsie, Lameck, Wanda, Eliot, Beach. 1948. Nutritional status of children: VIII. Blood serum alkaline phosphatase. J. Am. Diet. Assoc. 24:503.
- Hawk, Philip B., Aser, Bernard H., Summerson, William H. Practical physiological chemistry. 12th ed. p. 422. Philadelphia, Pa., The Blakiston Co.

¹⁵ Suppl The Suppl Addition and Application and Apple Supplementation and the Supplementation of the Suppleme

Hills, J. L., Wait, Charles E., White, H. C. 1909. Dietary studies in rural regions. In Vermont, Tennessee and Georgia. U.S.D.A. Office of Experiment Stations, Bul. 221.

Jackson, Robert L. and Kelly, Helen G. 1945. Growth charts for use in pediatric practice. J. of Ped. 27:215.

Jolliffe, N., Tisdall, F. F., Cannon, P. R., Editors. 1950. Clinical Nutrition. P. B. Holber, Inc., New York. Chapter 4. Biochemical methods by Goldsmith, G. A. p. 125.

Kaucher, Mildred, Moyer, Elsie Z., Harrison, Ann P., Thomas, Ruth Uhler, Rutledge, Marjorie Macy, Lameck, Wanda, Beach, Eliot. 1948. Nutritional status of children: VII. Hemoglobin. J. Am. Diet. Assoc. 24:497.

Kay, H. D. 1930. Plasma phosphatase: II. The enzyme in disease, particularly in bone disease. J. Biol. Chem. 89:249.

Kay, H. D. 1932. Phosphatase in growth and disease of the bone. Physiol. Rev. 12:384.

King, C. G. 1938. The physiology of vitamin C. J. Am. Med. Assoc. 111:1098.

King, C. G., Burch, H. B., Becker, R. R., Salmon, L. 1953. New functional role of ascorbic acid. Fed. Proc. 12:470. Abs. 1547.

King, C. G. and Menten, M. L. 1935. The influence of vitamin C upon the resistance to diphtheria toxin. J. Nut. 10:129.

Krogman, Wilton Marion. 1950. A handbook of the measurement and interpretation of height and weight in the growing child. Mong. of the Soc. for Res. in Child Development. Vol. 13, No. 3.

Kruse, H. D. 1942. A concept of the deficiency states. Milbank Memorial Fund Quarterly. 20:245.

Langworthy, C. F. 1911. Food customs and diet in American homes. U.S.D.A. Office of Experiment Stations Cir. 110. n Kontana i sina mana Ingga ta ingga gana i Ingga ta ingga gana i Leichsenring, Jane M., Donelson, Eva G., Deinard, Hortense H., Pittman, Martha S., Cooprider, Majel, Haggart, Virginia. 1943. Diets of 524 high school girls. J. Home Ec. 35:583.

Leverton, Ruth M., Gram, Mary R., Chaloupka, Marilyn. 1951. Effect of the time factor and caloric level of nitrogen balance utilization of young woman. J. of Nut. 44:537.

- Levine, S. Z., Marples, E., Gordon, H. H. 1939. A defect in the metabolism of aromatic amino acids in premature infants: The role of vitamin C. Science 90:620.
- Lowry, O. H., Lopez, J. A., Bessey, O. A. 1945. The determination of ascorbic acid in small amounts of blood serum. J. Biol. Chem. 160:609.
- Mack, Pauline Beery and Urback, Charles. 1949. A study of institutional children with particular reference to caloric value as well as other factors of the dietary. Mong. of the Soc. for Res. in Child Development. Vol. 13, No. 46.
- Macy, Icie G. 1946. Nutrition and chemical growth in childhood, Vol. 2. Springfield, Ill. Charles C. Thomas.
- Macy, Icie G. 1948. Nutritional status of children: I. Expanded opportunities for distitians. J. Am. Diet. Assoc. 24:81.
- Maresh, Marion M. 1948. Growth of the heart related to bodily growth during childhood and adolescence. Pediatrics 2:382.
- Merrow, Susan B., Krause, R. F., Browe, J. H., Newhall, C. A., Pierce, H. B. 1952. Relationships between intake and serum levels of ascorbic acid, vitamin A and carotene of selected groups of children with physical signs of vitamin deficiencies. J. of Nut. 46:445.
- Moore, Norman S. and Shaw, Charles. 1951. Nutritional status survey. Groton Township, New York: V. Physical findings. J. Am. Diet. Assoc. 27:94.

Canada Andreas and a second second second

Moschette, Dorothy, Causey, Kathryn, Cheely, Echo, Dallyn, Margaret, McBryde, Lauriame, Patrick, Ruth. 1952. Nutritional status of preadolescent boys and girls in selected areas of Louisiana. La. Tech. Bul. No. 465.

Moyer, Elsie Z., Beach, E. F., Robinson, Abner, Coryell, Margaret N., Miller, Sol, Roderuck, Charlotte, Lesher, Marjorie, Macy, Icie G. 1948. Nutritional status of children: II. The organization of a survey of child-caring agencies. J. Am. Diet. Assoc. 24:85.

Moyer, Elsie Z., Harrison, Ann P., Lesher, Marjorie, Miller, O. Neal. 1948. Nutritional status of children: III. Blood serum vitamin C. J. Am. Diet. Assoc. 24:199.

Mulay, A. S. and Hurwitz, S. 1938. Normal plasma phosphatase values (Jenner-Kay Method). J. Lab. and Clin. Med. 23:1117.

National Research Council. Food and Nutrition Board. 1948. Recommended dietary allowances. In Handbook of Nut. 2nd ed. Published for the Am. Med. Assoc. New York, The Blackston Co. 1951.

Nutrition Reviews. 1945. p. 108.

2017 Contractorian

Pierce, H. B., Fenton, P. F., Wilkens, W., Newland, M. E. 1945. Nutritional defects among children in Vermont. New Eng. J. Med. 233:612.

Pilcher, Helen L., Young, Charlotte M., Wilhemy, Jr., Odin. 1950. Nutritional status survey, Groton Township, New York: IV. Consumption of food groups. J. Am. Diet. Assoc. 26:973.

Putman, P., Milam, D. F., Anderson, R. K., Darby, W. J., Mead, P. A. 1949. The statistical association between the diet record of ascorbic acid intake and blood content of the vitamin in surveyed population. Milbank Memorial Fund Quarterly 27:355.

Report of Vitamin A Sub-Committee of the Accessory Food Factors Committee. 1945. Vitamin A deficiency and requirements of human adults. Nature 156:11.

Reynolds, M. S., Dickson, M., Evans, M., Olson, E. 1948. Dietary practices of some Wisconsin children. J. Home Ec. 40:131.

- Robinson, Abner, Lester, Marjorie, Harrison, Ann P., Moyer, Elsie Z., Gresack, Mary Catherine, Saunders, Claribel. 1948. Nutritional status of children: VI. Blood serum vitamin A and carotenoids. J. Am. Diet. Assoc. 24:410.
- Robison, Robert. 1923. The possible significance of hexosephosphoric esters in ossification. Biochem. J. 17:286.
- Robison, R., and Soames, K. M. 1924. The possible significance of hexosephosphoric esters in ossification: 2. The phosphoric esterose of ossifying cartilage. Biochem. J. 18:740.
- Schultze, M. O. 1947. Some biochemical aspects of metabolism of iron and copper. In Symposia on Nutrition: I. Nutritional anemia. The Robert Gould Research Foundation. pp. 99-113. Cincinnati, Ohio, Powell and White.
- Sealock, R. R. and Silberstein, H. E. 1939. The control of experimental alcoptonuria by means of vitamin C. Science 90:517.
- Sinclair, H. M. 1948. The assessment of human nutriture. Vitamines and Hormones 6:101-162. Academic Press, New York.
- Sinclair, H. M. 1950. Nutrition. Annual Review of Biochemistry. Stanford, California. Annual Reviews, Inc. Vol. 19, p. 339.
- Smith, Leslie D. Walters. 1952. Physical development in relation to food habits of 100 Iowa children over a period of three years. Unpublished M. S. Thesis. Ames, Iowa, Iowa State College Library.
- Snedecor, George W. 1946. Statistical Methods. 4th ed. Ames, Iowa, Iowa State College Press.
- Spies, Tom D. 1953. Influence of pregnancy, lactation, growth and aging on nutritional processes. J. Am. Med. Assoc. 153:185.

11.0 Contractor

Storvick, Clara A., Davey, Bessie L., Nitchols, Ruth M., Coffey, Ruth E., Rincke, Margaret L. 1950. Ascorbic acid requirements of older adolescents. Ore. Agr. Exp. Sta. Tech. Bul. 18.

Storvick, Clara A., Fincke, Margaret L., Quinn, Jeanne Perkins, Davey, Bessie L. 1947. A study of ascorbic acid metabolism of adolescent children. J. of Nut. 33:529.

Storvick, Clara A., Hathaway, Millicent, Nitchals, Ruth M. 1951. Nutritional status of selected populations group in Oregon: II. Biochemical tests in the blood of native born and reared school children in two regions. Milbank Memorial Fund Quarterly 24:255.

- Storvick, Clara A., Schaad, Bernice, Coffey, Ruth, Deardorff, Mary B. 1951. Nutritional status of selected population groups in Oregon: I. Food habits of native born and reared school children in two regions. Milbank Memorial Fund Quarterly 24:165.
- Summer, E. E. and Whitacre, J. 1931. Some factors affecting accuracy in the collecting of data on the growth of weight in school children. J. of Nut. 4:15.
- Szymanski, Betty B. and Longwell, Bernard B. 1951. Plasma vitamin A and carotene determinations in a group of normal children. J. of Nut. 45:431.
- Talbot, N. B. 1939. Influence of the thyroid hormone on serum phosphatase. Endocrinology 24:872.
- Talbot, N. B., Hoeffel, G., Shwachman, H., Tuoby, E. L. 1941. Serum phosphatase as an aid in the diagnosis of critinism and juvenile hypothyrodism. Am. J. Dis. Child. 62:273.
- Tucker, Ruth E., Chambers, Faith, Church, Helen N., Clayton, Mary M., Foster, W. D., Gates, Lorraine O., Hagan, Oladys C., Steele, Betty F., Wertz, Anne W., Young, Charlotte M. 1952. Cooperative nutritional status studies in Northeast Region: IV. Dietary findings. Northeast Regional Pub. No. 11. R. I. Agr. Exp. Sta. Eul. 802.
- U. S. Department of Agriculture. Bureau of Home Economics. 1941. Body measurements of American boys and girls for garment and pattern construction. Misc. Pub. No. 366.

 $(a_1,a_2,a_3)\in (0,1,2)$, the set of the second set of the second set of the second set of the set of the second set of the set of

Same and States

An electronic and a supersonal company of the super-

- Victor, Richard W. 1947. Vitamin C and anemia. In Symposia on Nutrition: I. Nutritional anemia. The Robert Gould Research Foundation. p. 179. Cincinnati, Ohio, Powell and White.
- Vitamin C Subcommittee of the Accessory Food Factors Committee, Medical Research Council, 1948. Vitamin-C requirement of human adults. Experimental study of vitamin-C deprivation in man. Lancet 254:853.
- Watson, E. H. and Lowrey, G. H. 1951. Growth and development of children. The Year Book Publishers, Inc. Chicago, Ill.
- Watt, Bernice K., Merrill, Annabel L. 1950. Composition of Foods - Raw, Processed, Prepared. Agriculture Handbook No. 8. Bureau of Human Nutrition and Home Economics, U.S.D.A.
- Weise, C. E., Mehl, J. W., Deuel, H. J., Jr. 1947. Studies on carotenoid metabolism: VIII. The <u>in vitro</u> conversion of carotene to vitamin A in the intestine of the rat. Arch. Biochem. 15:75.
- Wetzel, N. C. 1941. Physical fitness in terms of physique development and basal metabolism. J. Am. Med. Assoc. 116:1167.
- Wilhelmy, Odin, Jr., Young, Charlotte M., Pilcher, Helen L. 1950. Nutritional status survey, Groton Township, New York: III. Nutrient usage as related to certain social and economic factors. J. Am. Diet. Assoc. 26:869.
- Williams, Harold H., Parker, June S., Pierce, Zaida H., Hart, Jane C., Fiala, Gracia, Pilcher, Helen L. 1951. Nutritional status survey, Groton Township, New York: VI. Chemical findings. J. Am. Diet. Assoc. 27:215.
- Winchester, A. M. 1951. Genetics. A survey of the Principles of Heredity. Houghton Mifflin Co., Riverside Press, Cambridge, Mass.
- Wintrobe, M. M. 1945. Clinical hematology. 2nd ed. Philadelphia, Pa. Lea and Febriger.

Yarbrough, M. E. and Dann, W. J. 1941. Dark adaptometer and blood vitamin A measurements in a North Carolina nutrition survey. J. of Nut. 22:597.

and the set of the set

- Youmans, Jno. B., Patten, E. W., Kerns, Ruth. 1943. Surveys of the nutrition of populations. Description of the population, general methods and procedures and the findings in respect to the energy principle (calories) in the rural population in middle Tennessee. Am. J. Pub. Hlth. 33:58.
- Youmans, Jno. B., Patten, E. W., Sutton, W. R., Kerns, Ruth, Steinkamp, Ruth. 1943. Surveys of the nutrition of populations: II. Protein nutrition of a rural population in middle Tennessee. Am. J. Publ. Hlth. 33:955.
- Young, Charlotte M. and Pilcher, Helen L. 1950. Nutritional status survey, Groton Township, New York: II. Nutrient usage of families and individuals. J. Am. Diet. Assoc. 26:776.

ACKNOWLEDGMENTS

Sincere appreciation is expressed to Dr. Ercel S. Eppright for her inspiration and helpful guidance throughout the development of this study and the writing of this thesis; to Dr. Charlotte Roderuck for supervising the collection and the analyses of the blood samples; to Cecilia Pudelkewicz and Sue Judge for collecting and analyzing the blood samples; to Elaine Claridge for obtaining the dietary records.

This study is part of North Central Region Cooperative project NC-5, <u>Nutritional Status and Dietary Needs</u> of <u>Population Groups</u>, subproject No. 2 -- "The Nutritional Status of School Children: The School Lunch as an Influencing Factor."

-351-

Content of the second second second second

and the second second

Table 92

asjanni - m.

and in state water

Population Group One

Schools in Cities of 50,000 Population or Over

	Juni	senior	high s	chools	Elementary school					
City	Total	Full meal	Supp. meal	No lunch	No informa- tion	Total	Full meal	Supp. meal	No lunch	No informa- tion
C.R.	4	4		-		15	1	**	14	
D.	4		3	1		13		**	13	
D.M.	10	10				45	3	***	42	
w .	5	5				14		6	8	
s.c.	7	7				23			23	
Total	30	26	3	1		110	4	6	100	400 (PD)

-353-

Ĵ.

Table 93

Population Group Two

Schools in Cities and Towns 1 - 49,999 Population and All Consolidated and Independent Schools with Grades 1 to 12

Type of lunch program	Total	Full meal	Supp. meal	No lunch	No informa- tion
Schools					
Junior and senior high	86	41	17	28	
Elementary	259	26	130	103	
Consolidated and independent	783	5 25	33	209	16
Total	1128	592	180	340	16

ىلىمەرمەر بەرمەر يېچە كارلىقى ئىل 1970-يومۇرى بەرمەر بەرمەر يېچىن

CONTRACTOR DE LA CONTRACT

- Ale College Barting College and Annual Sciences Annual Annual Sciences and Annual S

1000

and a second
Table 94

Population Group Three

Rural Elementary Schools

Type lunch program	Counties ⁸
Some food	61
No food	10
No information	28
Total	99

⁸It was not possible to classify the numerous rural schools under each category for type of lunch program, so the schools were divided by counties into the following groups: (1) some type of lunch, (2) no food served, (3) no information about the school. ുകള് പ്രതിമയാണ് പ്രത്തേഷം നേള് പ്രതിന്ത്രം പ്രതിന്ത്രം പ്രതിന്ത്രം പ്രതിന്ത്രം പ്രതിന്ത്രം പ്രതിന്ത്രം പ്രതിന്ത പക്ഷം പ്രതിന്ത്രം പ്രതിന്ത്രം പ്രതിന്ത്രം പ്രതിന്ത്രം പ്രതിന്ത്രം പ്രതിന്ത്രം പ്രതിന്ത്രം പ്രതിന്ത്രം പ്രതിന്തരം <mark>میشو</mark>ند. به همچنان با در این مولایه هی در می در این میکرد. با این این این این در مرد میرمون هم میزارد از که این می در در مرد

Table 95

Schools in First Sample

Population Group I -- schools in cities of 50,000 I. or over Junior and senior high schools Α. 1. Full meal McKinley (Cedar Rapids) West Waterloo 2. Supplemental food Frank Smart (Davenport) J. B. Young (Davenport) No lunch 3. None 4. No information None B. Elementary schools 1. Full meal Phillips (Des Moines) Willard (Des Moines) 2. Supplemental food Roosevelt (Waterloo) LaFayette (Waterloo) 3. No lunch Buchanan (Cedar Rapids) Cleveland (Cedar Rapids) 4 No information None

-357-

A Construction of the second s

Table 95 (Cont'd)

n digeograph de any source generation a conservation a conservation géneration

جر محدد ولا -

II.	50,	000	tion Group II schools in towns under and consolidated and independent schools rades 1 to 12
	A.	Jur	nior and senior high schools
		1.	Full meal
			Oak Street (Burlington) Iowa City
		2.	Supplemental food
			Oelwein Stuart (Ottumwa)
		3.	No lunch
			Mason City Oskaloosa
		4.	No information
			None
	в.	Ele	mentary schools
		1.	Full meal
			Roosevelt (Perry) Richardson (Fort Madison)
		2.	Supplemental food
			Grimes (Burlington) North Ward (Sigourney)
		3.	No lunch
			West Lynns (Clinton) Grant (Albia)

4. No information

None

Table 95 (Cont'd)

A faller has be analysis

.

- C. Schools with grades 1 12
 - 1. Full meal

Slater Farnhamville

2. Supplemental food

Jessup DeWitt

3. No lunch

Elvira Buffalo

4. No information

Eureka Brighton

- III. Population Group III
 - A. Rural elementary schools
 - 1. Some type of food

Clinton County O'Brien County

2. No food served

Carroll County Des Moines County

3. No information

Bremer County Winnebago County

.....

Table 96

School in Sample

Population Group II -- Consolidated and independent schools with grades 1 to 12

1. Full meal

Sectors and the sectors of the secto

Slater Farnhamville West Branch Henderson Armstrong Cumberland Viola Township Napier Nodaway

2. No lunch

Humeston Woden McGregor New Hampton Fredrickburg

Note: The following schools did not wish to participate in the study: Woden, Nodaway and Henderson. The schools were randomly replaced by Corwith, Attica and Williams.

میں میں ہے۔ پیچی کا میں میں جارہ کی ایک ایک ایک میں میں میں میں میں میں ا

Table 97

Schools in the Sample

Population Group I -- Schools in cities of 50,000 population or over

- A. Senior high schools
 - 1. Full meal

and a second s

いたとうないないのであり

East (Des Moines) North (Des Moines) McKinley (Cedar Rapids) East (Waterloo)

2. No lunch

Davenport

B. Junior high schools

1. Full meal

Amos Hiatt (Des Moines) Wilson (Des Moines) Wallace (Cedar Rapids) McKinley (Cedar Rapids)

2. No lunch

Sudeon (Davenport)

- C. Blementary schools
 - 1. Full meal

Phillips (Des Moines) Hayes (Cedar Rapids) Arthur (Cedar Rapids)

Table 97 (Cont'd)

Population Group I -- Schools in cities of 50,000 population or over

2. No lunch

Wallace (Des Moines) Longfellow (Des Moines) Roosevelt (Waterloo) Irving (Waterloo) Emerson (Waterloo) Buchanan (Cedar Rapids) Joy (Sioux City) Lincoln (Davenport) -362-

 $S_{2,2}(T) = S_{2,2}(T) + S_{$

Table 98

Population Group II -- Schools in towns with populations 49,999 and under A. Junior and senior high schools 1. Full meal Charles City Clear Lake Council Bluffs Iowa City 2. No lunch Boone Cedar Falls Maghoketa в. Elementary schools 1. Full meal Emerson Hough (Newton) Bryant (Algona) Stewart (Washington) Garfield (Cherokee) Hawthorne (Independence) Lincoln (Perry) 2. No lunch Bryant (Boone) Rogers (Marshalltown) Rogers (Marshalltown) Crawford (Ames) Garfield (Oskaloosa) Agassiz (Ottumwa) Jackson (Dubuque) Garfield (Keokuk) Franklin (LeMars) McKinley (Mason City) North (Sigourney)

Table 98 (Cont'd)

A DESCRIPTION OF THE OWNER OF THE OWNER

Population Group II -- Schools in towns with populations 49,999 and under

> Roosevelt (Clinton) Grant (Atlantic) Whittier (Ames) Sunnyside (Burlington) Grant (Albia) Franklin (Creston) Franklin (Council Bluffs) Grimes (Burlington) Grades (Decorah) Hawley (Fort Dodge)

Note: The following schools did not wish to participate in the study: Grimes, Sunnyside, Grant (Atlantic). They were randomly replaced by Cedar Heights (Cedar Falls), Manu and Sabin (Iowa City).

Population		Total no.	No. schools	School enrollment no.		Children in sample no.	
groups	Program	schools	in sample	boys	girls	boys	girls
I							
50,000	Lunch ^a	11	3	381 326	364	18 18 48	17 18 49
	No lunch ^a	11	3 3 8	326	298	18	18
	No lunch	95	8	1165	1088	48	49
II	_						
50,000	Lunch ^a	37 37 219	6	177 585 2438	212 526 2296	33 36 117	33 37 122
	No lunch ^a	37		585	526	36	_37
	No lunch	219	20	2438	2296	117	122
II							
Grades	Lunch	525 242	12	1124	1044	165	177 84
1 to 12	No lunch	242	5	700	656	82́	84
II		6	_				00
Jr. and Sr.	Mixed	62	7	2375	2427	79	80

Table 99

Schools in the State-wide Sample and the Number of Children in the Sample

^aTwo sets of samples were drawn from these schools: (1) from the group who regularly ate the school lunch; (2) another from the group that went home or carried lunch.

and the second second second with the second s

-364-

I di Salaha a

high school

Dear Parents:

One of the most important factors contributing to the health of children is the food they eat. We now know that the way they eat not only influences how they grow and develop physically, but also how well and how quickly they learn. Iowa State College is launching a state-wide program to find out how the children of Iowa are eating and if their health is as good as it is possible for them to have through good nutrition. Iowa and several other states are working together to find the answers to these questions. Several schools, about 40, have been selected at random throughout the state. By studying a sample of children from all of these schools we shall arrive at the facts about Iowa school children.

A group of trained workers from Iowa State College will visit each of the sample schools which are willing to cooperate and secure some dietary records of the children, take heights and weights and other body measurements, and make blood tests for hemoglobin (the material that makes blood red) and for Vitamin C. Possibly the pupils will be given medical and dental examinations by well qualified doctors and dentists.

Since we cannot offer to all the students the opportunity of receiving all the examinations, tests, and the analysis of a week's dietary intake, we have selected a few students whose names were drawn from the group to represent the school population. Your child has been selected.

If you are willing to have your child included in this study, will you please indicate by signing the enclosed form. The results of the medical and dental examinations and the nutritional study will be made available to you if you desire. You will be told in advance of the dates that the examinations will be made.

Sincerely,

I wish to cooperate in the study of Iowa School Children which is being conducted. Will you please give medical and dental examinations and laboratory tests to:

Howard Mullins

Signed	by		
-	-	(Father) Mrs. Leonard Mullins	
		(Mother)	
		(Guardian)	

Will you please enclose this form in the envelope addressed to Virginia De Cecco, Research Associate.